Skip to content
Snippets Groups Projects
  • STEVAN Antoine's avatar
    447e4473
    add "long full recoding" test (dragoon/komodo!147) · 447e4473
    STEVAN Antoine authored
    this will
    - recode for $\#steps \in [10, 20, 100]$
    - at $t = 0$, $k$ random shards among the $n$ encoded will be selected at random
    - at $t \geq 1$, all $k$ shards will be used to recode $k$ brand new shards
    - make sure the last set of $k$ shards recoded $\#steps$ together can decode the data
    
    ## example with $(k, n) = (3, 5)$ and $\#steps = 3$
    - $(s_i)_{1 \leq i \leq k}$ are the $k$ source shards
    - $(e_j)_{1 \leq j \leq n}$ are the $n$ encoded shards
    - $(m_i)_{1 \leq i \leq k}$ are the $k$ randomly selected shards
    - $(n_i)_{1 \leq i \leq k}$ are the shards after step $1$
    - $(o_i)_{1 \leq i \leq k}$ are the shards after step $2$
    - $(p_i)_{1 \leq i \leq k}$ are the shards after step $3$
    - the $(p_i)_{1 \leq i \leq k}$ will be used for decoding
    
    ```mermaid
    graph TD;
    
        s1 --> e1; s1 --> e2; s1 --> e3; s1 --> e4; s1 --> e5;
        s2 --> e1; s2 --> e2; s2 --> e3; s2 --> e4; s2 --> e5;
        s3 --> e1; s3 --> e2; s3 --> e3; s3 --> e4; s3 --> e5;
    
        e1 --> m1;
        e3 --> m2;
        e4 --> m3;
    
        m1 --> n1; m1 --> n2; m1 --> n3;
        m2 --> n1; m2 --> n2; m2 --> n3;
        m3 --> n1; m3 --> n2; m3 --> n3;
    
        n1 --> o1; n1 --> o2; n1 --> o3;
        n2 --> o1; n2 --> o2; n2 --> o3;
        n3 --> o1; n3 --> o2; n3 --> o3;
    
        o1 --> p1; o1 --> p2; o1 --> p3;
        o2 --> p1; o2 --> p2; o2 --> p3;
        o3 --> p1; o3 --> p2; o3 --> p3;
    ```
    447e4473
    History
    add "long full recoding" test (dragoon/komodo!147)
    STEVAN Antoine authored
    this will
    - recode for $\#steps \in [10, 20, 100]$
    - at $t = 0$, $k$ random shards among the $n$ encoded will be selected at random
    - at $t \geq 1$, all $k$ shards will be used to recode $k$ brand new shards
    - make sure the last set of $k$ shards recoded $\#steps$ together can decode the data
    
    ## example with $(k, n) = (3, 5)$ and $\#steps = 3$
    - $(s_i)_{1 \leq i \leq k}$ are the $k$ source shards
    - $(e_j)_{1 \leq j \leq n}$ are the $n$ encoded shards
    - $(m_i)_{1 \leq i \leq k}$ are the $k$ randomly selected shards
    - $(n_i)_{1 \leq i \leq k}$ are the shards after step $1$
    - $(o_i)_{1 \leq i \leq k}$ are the shards after step $2$
    - $(p_i)_{1 \leq i \leq k}$ are the shards after step $3$
    - the $(p_i)_{1 \leq i \leq k}$ will be used for decoding
    
    ```mermaid
    graph TD;
    
        s1 --> e1; s1 --> e2; s1 --> e3; s1 --> e4; s1 --> e5;
        s2 --> e1; s2 --> e2; s2 --> e3; s2 --> e4; s2 --> e5;
        s3 --> e1; s3 --> e2; s3 --> e3; s3 --> e4; s3 --> e5;
    
        e1 --> m1;
        e3 --> m2;
        e4 --> m3;
    
        m1 --> n1; m1 --> n2; m1 --> n3;
        m2 --> n1; m2 --> n2; m2 --> n3;
        m3 --> n1; m3 --> n2; m3 --> n3;
    
        n1 --> o1; n1 --> o2; n1 --> o3;
        n2 --> o1; n2 --> o2; n2 --> o3;
        n3 --> o1; n3 --> o2; n3 --> o3;
    
        o1 --> p1; o1 --> p2; o1 --> p3;
        o2 --> p1; o2 --> p2; o2 --> p3;
        o3 --> p1; o3 --> p2; o3 --> p3;
    ```
Code owners
Assign users and groups as approvers for specific file changes. Learn more.