Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
I-MAV
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
PASTOR Philippe
I-MAV
Commits
4c2afbc5
Commit
4c2afbc5
authored
6 months ago
by
PASTOR Philippe
Browse files
Options
Downloads
Patches
Plain Diff
Téléverser un nouveau fichier
parent
7f9e3791
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mavion/mavion.py
+433
-0
433 additions, 0 deletions
mavion/mavion.py
with
433 additions
and
0 deletions
mavion/mavion.py
0 → 100644
+
433
−
0
View file @
4c2afbc5
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
gymnasium
as
gym
from
gymnasium.envs.classic_control
import
utils
import
yaml
from
scipy.optimize
import
fsolve
from
scipy.integrate
import
solve_ivp
deg2rad
=
2
*
np
.
pi
/
360
def
hat
(
x
):
mat
=
np
.
array
([[
0
,
-
x
[
2
],
x
[
1
]],
[
x
[
2
],
0
,
-
x
[
0
]],
[
-
x
[
1
],
x
[
0
],
0
]])
return
mat
def
quat2dcm
(
q
):
dcm
=
np
.
array
(
[
[
q
[
0
]
**
2
+
q
[
1
]
**
2
-
q
[
2
]
**
2
-
q
[
3
]
**
2
,
2
*
(
q
[
1
]
*
q
[
2
]
+
q
[
0
]
*
q
[
3
]),
2
*
(
q
[
1
]
*
q
[
3
]
-
q
[
0
]
*
q
[
2
]),
],
[
2
*
(
q
[
1
]
*
q
[
2
]
-
q
[
0
]
*
q
[
3
]),
q
[
0
]
**
2
-
q
[
1
]
**
2
+
q
[
2
]
**
2
-
q
[
3
]
**
2
,
2
*
(
q
[
2
]
*
q
[
3
]
-
q
[
0
]
*
q
[
1
]),
],
[
2
*
(
q
[
1
]
*
q
[
3
]
+
q
[
0
]
*
q
[
2
]),
2
*
(
q
[
2
]
*
q
[
3
]
-
q
[
0
]
*
q
[
1
]),
q
[
0
]
**
2
-
q
[
1
]
**
2
-
q
[
2
]
**
2
+
q
[
3
]
**
2
,
],
]
)
return
dcm
def
eul2quat
(
a
):
c
=
np
.
cos
(
a
/
2
)
s
=
np
.
sin
(
a
/
2
)
q
=
np
.
array
(
[
c
[
0
]
*
c
[
1
]
*
c
[
2
]
+
s
[
0
]
*
s
[
1
]
*
s
[
2
],
-
c
[
0
]
*
s
[
1
]
*
s
[
2
]
+
c
[
0
]
*
c
[
1
]
*
s
[
2
],
c
[
0
]
*
s
[
1
]
*
c
[
2
]
+
s
[
0
]
*
c
[
1
]
*
s
[
2
],
c
[
0
]
*
c
[
1
]
*
s
[
2
]
-
s
[
0
]
*
s
[
1
]
*
c
[
2
],
]
)
return
q
def
quat2eul
(
q
):
phi
=
np
.
arctan2
(
2
*
(
q
[
0
]
*
q
[
1
]
+
q
[
2
]
*
q
[
3
]),
1
-
2
*
(
q
[
1
]
*
q
[
1
]
+
q
[
2
]
*
q
[
2
]))
theta
=
np
.
arcsin
(
2
*
(
q
[
0
]
*
q
[
2
]
-
q
[
1
]
*
q
[
3
]))
psi
=
np
.
arctan2
(
2
*
(
q
[
0
]
*
q
[
3
]
+
q
[
1
]
*
q
[
2
]),
1
-
2
*
(
q
[
3
]
*
q
[
3
]
+
q
[
2
]
*
q
[
2
]))
return
np
.
array
([
phi
,
theta
,
psi
])
def
eul2dcm
(
a
):
Rx
=
np
.
array
([[
1
,
0
,
0
],
[
0
,
np
.
cos
(
a
[
0
]),
np
.
sin
(
a
[
0
])],
[
0
,
-
np
.
sin
(
a
[
0
]),
np
.
cos
(
a
[
0
])]])
Ry
=
np
.
array
([[
np
.
cos
(
a
[
1
]),
0
,
-
np
.
sin
(
a
[
1
])],
[
0
,
1
,
0
],
[
np
.
sin
(
a
[
1
]),
0
,
np
.
cos
(
a
[
1
])]])
Rz
=
np
.
array
([[
np
.
cos
(
a
[
2
]),
np
.
sin
(
a
[
2
]),
0
],
[
-
np
.
sin
(
a
[
2
]),
np
.
cos
(
a
[
2
]),
0
],
[
0
,
0
,
1
]])
return
Rx
@
Ry
@
Rz
def
s2q
(
x
):
quat
=
eul2quat
(
x
[
3
:
6
])
x
=
np
.
concatenate
([
x
[
0
:
3
],
quat
,
x
[
6
:
12
]])
return
x
def
q2s
(
x
):
eul
=
quat2eul
(
x
[
3
:
7
])
x
=
np
.
concatenate
([
x
[
0
:
3
],
eul
,
x
[
7
:
13
]])
return
x
class
Mavion
:
def
__init__
(
self
,
file
=
"
mavion.yaml
"
):
stream
=
open
(
file
,
"
r
"
)
drone
=
yaml
.
load
(
stream
,
Loader
=
yaml
.
Loader
)
self
.
NAME
=
drone
[
'
NAME
'
]
self
.
RHO
=
drone
[
'
RHO
'
]
self
.
G
=
drone
[
'
G
'
]
self
.
MASS
=
drone
[
'
MASS
'
]
self
.
CHORD
=
drone
[
'
CHORD
'
]
self
.
WINGSPAN
=
drone
[
'
WINGSPAN
'
]
self
.
WET_SURFACE
=
drone
[
'
WET_SURFACE
'
]
self
.
DRY_SURFACE
=
drone
[
'
DRY_SURFACE
'
]
self
.
PROP_RADIUS
=
drone
[
'
PROP_RADIUS
'
]
self
.
Cd0
=
0.1
self
.
Cy0
=
0.1
self
.
dR
=
-
0.1
*
self
.
CHORD
self
.
PHI_fv
=
np
.
diag
([
self
.
Cd0
,
self
.
Cy0
,
(
2
*
np
.
pi
+
self
.
Cd0
)])
self
.
PHI_mv
=
np
.
array
(
[
[
0
,
0
,
0
],
[
0
,
0
,
-
1
/
self
.
CHORD
*
self
.
dR
*
(
2
*
np
.
pi
+
self
.
Cd0
)],
[
0
,
1
/
self
.
WINGSPAN
*
self
.
dR
*
self
.
Cy0
,
0
],
]
)
self
.
PHI_mw
=
1
/
2
*
np
.
diag
([
0.5
,
0.5
,
0.5
])
self
.
PHI
=
np
.
block
([[
self
.
PHI_fv
,
self
.
PHI_mv
],
[
self
.
PHI_mv
,
self
.
PHI_mw
]])
self
.
PHI_n
=
drone
[
"
PHI_n
"
]
# acording to back-of-the-envelope computations
self
.
INERTIA
=
np
.
diag
(
drone
[
"
INERTIA
"
])
# geometric parameters
self
.
P_P1_CG
=
np
.
array
(
drone
[
"
P_P1_CG
"
])
*
self
.
CHORD
self
.
P_P2_CG
=
np
.
array
(
drone
[
"
P_P2_CG
"
])
*
self
.
CHORD
self
.
P_A1_CG
=
np
.
array
(
drone
[
"
P_A1_CG
"
])
*
self
.
CHORD
self
.
P_A2_CG
=
np
.
array
(
drone
[
"
P_A2_CG
"
])
*
self
.
CHORD
self
.
ELEVON_MEFFICIENCY
=
np
.
array
(
drone
[
'
ELEVON_MEFFICIENCY
'
])
self
.
ELEVON_FEFFICIENCY
=
np
.
array
(
drone
[
'
ELEVON_FEFFICIENCY
'
])
self
.
PROP_KP
=
drone
[
'
PROP_KP
'
]
self
.
PROP_KM
=
drone
[
'
PROP_KM
'
]
self
.
INERTIA_PROP_X
=
drone
[
'
INERTIA_PROP_X
'
]
self
.
INERTIA_PROP_N
=
drone
[
'
INERTIA_PROP_N
'
]
self
.
pos
=
np
.
zeros
(
3
)
self
.
vel
=
np
.
zeros
(
3
)
self
.
ang
=
np
.
zeros
(
3
)
self
.
rot
=
np
.
zeros
(
3
)
self
.
quat
=
eul2quat
(
self
.
ang
)
def
thrust
(
self
,
dx
):
"""
THRUST thrust forces and moments modeling
this function computes the propeller thrust by means of simple
prop formulas commonly applied in quadrotor literature.
INPUTS:
motor rot. : dx in R(1x1)
+ required self specs:
|---- PROP_KP in R(1x1)
|---- PROP_KM in R(1x1)
OUTPUTS:
Prop force : T (N) (body axis) in R(3x1)
Prop moment: N (Nm) (body axis) in R(3x1)
vl: vehicle velocity in NED axis (m/s) [3x1 Real]
wb: vehicle angular velocity in body axis (rad/s) [3x1 Real]
q: quaternion attitude (according to MATLAB convention) [4x1 Real]
NOTE1: notice that motor rotation
'
s sign depend on which section we are due to
counter-rotating propellers;
NOTE2: elevon sign convention is positive pictch-up deflections.
NOTE3: gyroscopic effects are implemented in the caller function!
refer to [1] for further information.
REFERENCES:
[1] Lustosa L.R., Defay F., Moschetta J.-M.,
"
The Phi-theory
approach to flight control design of tail-sitter vehicles
"
@ http://lustosa-leandro.github.io
"""
kp
=
self
.
PROP_KP
km
=
self
.
PROP_KM
# prop forces computation / notice that negative thrust is not implemented
T
=
kp
*
dx
**
2
*
np
.
array
([
1
,
0
,
0
])
# prop moments computation
N
=
np
.
sign
(
dx
)
*
km
*
dx
**
2
*
np
.
array
([
1
,
0
,
0
])
return
[
T
,
N
]
def
aero
(
self
,
quat
,
vel
,
rot
,
T
,
de
,
w
):
"""
AERO aerodynamic forces and moments computation (in a wing section!)
this function computes the aerodynamic forces and moments in body axis
in view of Phi-theory in a wing section. it includes propwash effects
due to thrust.
NOTE2: elevon sign convention is positive pictch-up deflections.
"""
# data extraction from self struct
PHI_fv
=
self
.
PHI_fv
PHI_mv
=
self
.
PHI_mv
PHI_mw
=
self
.
PHI_mw
phi_n
=
self
.
PHI_n
RHO
=
self
.
RHO
Swet
=
self
.
WET_SURFACE
Sdry
=
self
.
DRY_SURFACE
chord
=
self
.
CHORD
ws
=
self
.
WINGSPAN
Prop_R
=
self
.
PROP_RADIUS
Thetam
=
self
.
ELEVON_MEFFICIENCY
Thetaf
=
self
.
ELEVON_FEFFICIENCY
# derivative data
Sp
=
np
.
pi
*
Prop_R
**
2
# DCM computation
D
=
quat2dcm
(
quat
)
# freestream velocity computation in body frame
vinf
=
D
@
(
vel
-
w
)
# computation of total wing section area
S
=
Swet
+
Sdry
# computation of chord matrix
B
=
np
.
diag
([
ws
,
chord
,
ws
])
# eta computation
eta
=
np
.
sqrt
(
np
.
linalg
.
norm
(
vinf
)
**
2
+
phi_n
*
np
.
linalg
.
norm
(
B
@rot
)
**
2
)
# Force computation
# airfoil contribution
Fb
=
-
1
/
2
*
RHO
*
S
*
eta
*
PHI_fv
@vinf
-
1
/
2
*
RHO
*
S
*
eta
*
PHI_mv
@B@rot
-
1
/
2
*
Swet
/
Sp
*
PHI_fv
@T
# elevon contribution
Fb
=
Fb
+
1
/
2
*
RHO
*
S
*
eta
*
PHI_fv
@np.cross
(
de
*
Thetaf
,
vinf
)
\
+
1
/
2
*
RHO
*
S
*
eta
*
PHI_mv
@B@np.cross
(
de
*
Thetaf
,
rot
)
\
+
1
/
2
*
Swet
/
Sp
*
PHI_fv
@np.cross
(
de
*
Thetaf
,
T
)
# Moment computation
# airfoil contribution
Mb
=
-
1
/
2
*
RHO
*
S
*
eta
*
B
@PHI_mv@vinf
-
1
/
2
*
RHO
*
S
*
eta
*
B
@PHI_mw@B@rot
-
1
/
2
*
Swet
/
Sp
*
B
@PHI_mv@T
# elevon contribution
Mb
=
Mb
+
1
/
2
*
RHO
*
S
*
eta
*
B
@PHI_mv@np.cross
(
de
*
Thetam
,
vinf
)
\
+
1
/
2
*
RHO
*
S
*
eta
*
B
@PHI_mw@B@np.cross
(
de
*
Thetam
,
rot
)
\
+
1
/
2
*
Swet
/
Sp
*
B
@PHI_mv@np.cross
(
de
*
Thetam
,
T
)
return
[
Fb
,
Mb
]
def
dyn
(
self
,
x
,
u
,
w
):
G
=
self
.
G
MASS
=
self
.
MASS
INERTIA
=
self
.
INERTIA
# position of propellers wrt center of gravity
P_P1_CG
=
self
.
P_P1_CG
P_P2_CG
=
self
.
P_P2_CG
# position of aerodynamic wrenches wrt center of gravity
P_A1_CG
=
self
.
P_A1_CG
P_A2_CG
=
self
.
P_A2_CG
# propeller blade inertia
INERTIA_PROP_X
=
self
.
INERTIA_PROP_X
INERTIA_PROP_N
=
self
.
INERTIA_PROP_N
# state demultiplexing
quat
=
x
[
3
:
7
]
vel
=
x
[
7
:
10
]
rot
=
x
[
10
:
13
]
# input demultiplexing
dx1
=
u
[
0
]
dx2
=
u
[
1
]
de1
=
u
[
2
]
de2
=
u
[
3
]
# linear velocity derivative
D
=
quat2dcm
(
quat
)
[
T1
,
N1
]
=
self
.
thrust
(
dx1
)
[
T2
,
N2
]
=
self
.
thrust
(
dx2
)
[
A1
,
M1
]
=
self
.
aero
(
quat
,
vel
,
rot
,
T1
,
de1
,
w
)
[
A2
,
M2
]
=
self
.
aero
(
quat
,
vel
,
rot
,
T2
,
de2
,
w
)
Fb
=
T1
+
T2
+
A1
+
A2
dvdt
=
np
.
array
([
0
,
0
,
G
])
+
1
/
MASS
*
D
.
T
@Fb
# angular velocity derivative
Ma
=
M1
+
M2
+
np
.
cross
(
P_A1_CG
,
A1
)
+
np
.
cross
(
P_A2_CG
,
A2
)
P
=
rot
[
0
]
Q
=
rot
[
1
]
R
=
rot
[
2
]
Jpx
=
INERTIA_PROP_X
Jpn
=
INERTIA_PROP_N
tau1
=
N1
-
(
P
+
dx1
)
*
(
Jpx
-
Jpn
)
*
np
.
array
([
0
,
R
,
-
Q
])
tau2
=
N2
-
(
P
+
dx2
)
*
(
Jpx
-
Jpn
)
*
np
.
array
([
0
,
R
,
-
Q
])
Mg
=
tau1
+
tau2
+
np
.
cross
(
P_P1_CG
,
T1
)
+
np
.
cross
(
P_P2_CG
,
T2
)
Mb
=
Ma
+
Mg
drdt
=
np
.
linalg
.
inv
(
INERTIA
)
@
(
Mb
-
np
.
cross
(
rot
,
INERTIA
@rot
))
# kinematic equations
dpdt
=
vel
dqdt
=
np
.
zeros
(
4
)
dqdt
[
0
]
=
-
1
/
2
*
np
.
dot
(
rot
,
quat
[
1
:
4
])
dqdt
[
1
:
4
]
=
1
/
2
*
(
quat
[
0
]
*
rot
-
np
.
cross
(
rot
,
quat
[
1
:
4
]))
return
np
.
concatenate
([
dpdt
,
dqdt
,
dvdt
,
drdt
])
def
trim
(
self
,
vh
,
vz
):
x
=
np
.
zeros
(
13
)
x
[
7
]
=
vh
x
[
9
]
=
vz
def
func
(
y
):
dx
,
de
,
theta
=
y
eul
=
np
.
array
([
0
,
theta
,
0
])
quat
=
eul2quat
(
eul
)
x
[
3
:
7
]
=
quat
u
=
np
.
array
([
-
dx
,
dx
,
de
,
de
])
dx_dt
=
self
.
dyn
(
x
,
u
,
np
.
zeros
(
3
))
return
dx_dt
[
7
],
dx_dt
[
9
],
dx_dt
[
11
]
y0
=
np
.
array
([
100
,
0
,
0
])
y
=
fsolve
(
func
,
y0
)
return
y
def
step
(
self
,
x
,
u
,
w
,
dt
):
func
=
lambda
t
,
s
:
self
.
dyn
(
s
,
u
,
w
)
sol
=
solve_ivp
(
func
,
(
0
,
dt
),
x
,
method
=
'
RK45
'
)
return
sol
.
y
.
T
[
-
1
]
def
sim
(
self
,
t_span
,
x0
,
fctrl
,
fwind
):
func
=
lambda
t
,
s
:
self
.
dyn
(
s
,
fctrl
(
t
,
s
,
w
),
fwind
(
t
,
s
))
sol
=
solve_ivp
(
func
,
t_span
,
x0
,
method
=
'
RK45
'
,
max_step
=
0.01
)
return
sol
class
MavionEnv
(
gym
.
Env
):
def
__init__
(
self
,
mavion
=
Mavion
(),
render_mode
=
None
):
self
.
tau
=
0.02
# seconds between state updates
# Angle at which to fail the episode
self
.
pos_threshold
=
np
.
array
([
2.4
,
2.4
,
2.4
])
self
.
ang_threshold
=
np
.
array
([
15
,
15
,
15
])
*
deg2rad
self
.
vel_threshold
=
np
.
finfo
(
np
.
float32
).
max
*
np
.
ones
(
3
)
self
.
rot_threshold
=
np
.
finfo
(
np
.
float32
).
max
*
np
.
ones
(
3
)
high
=
np
.
concatenate
(
[
self
.
pos_threshold
*
2
,
self
.
ang_threshold
*
2
,
self
.
vel_threshold
,
self
.
rot_threshold
],
dtype
=
np
.
float32
,
)
self
.
observation_space
=
gym
.
spaces
.
Box
(
-
high
,
high
,
dtype
=
np
.
float32
)
self
.
action_space
=
gym
.
spaces
.
Box
(
0
,
1
,
shape
=
(
4
,),
dtype
=
np
.
float32
)
self
.
target
=
None
self
.
obs
=
None
self
.
steps_beyond_terminated
=
None
self
.
mavion
=
mavion
def
reset
(
self
,
seed
=
None
,
options
=
None
):
super
().
reset
(
seed
=
seed
)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
low
,
high
=
utils
.
maybe_parse_reset_bounds
(
options
,
-
0.05
,
0.05
# default low
)
# default high
self
.
target
=
np
.
zeros
(
12
)
self
.
obs
=
self
.
np_random
.
uniform
(
low
=
low
,
high
=
high
,
size
=
(
12
,))
self
.
state
=
self
.
obs
+
self
.
target
self
.
steps_beyond_terminated
=
None
return
self
.
obs
,
{}
def
step
(
self
,
action
):
x
=
s2q
(
self
.
state
)
u
=
action
w
=
np
.
zeros
(
3
)
new_state
=
self
.
mavion
.
step
(
x
,
u
,
w
,
self
.
tau
)
self
.
state
=
q2s
(
new_state
)
terminated
=
np
.
array_equal
(
self
.
state
,
self
.
target
)
reward
=
1
if
terminated
else
0
# Binary sparse rewards
self
.
obs
=
self
.
state
-
self
.
target
return
self
.
obs
,
reward
,
terminated
,
False
,
{}
if
__name__
==
"
__main__
"
:
mavion
=
Mavion
()
vh
=
5
vz
=
0
dx
,
de
,
theta
=
mavion
.
trim
(
vh
,
vz
)
theta
=
(
theta
+
np
.
pi
)
%
(
2
*
np
.
pi
)
-
np
.
pi
print
(
dx
,
de
,
theta
*
57.3
)
pos
=
np
.
array
([
0
,
0
,
-
10
])
eul
=
np
.
array
([
0
,
theta
,
0
])
vel
=
np
.
array
([
vh
,
0
,
vz
])
rot
=
np
.
array
([
0
,
0
,
0
])
st
=
np
.
concatenate
([
pos
,
eul
,
vel
,
rot
])
x
=
s2q
(
st
)
u
=
np
.
array
([
-
dx
,
dx
,
de
,
de
])
w
=
np
.
zeros
(
3
)
def
ctl
(
t
,
s
,
w
):
return
u
def
wnd
(
t
,
s
):
return
w
sim
=
mavion
.
sim
((
0
,
20
),
x
,
ctl
,
wnd
)
fig
,
axs
=
plt
.
subplots
(
2
,
2
,
layout
=
'
constrained
'
)
ax
=
axs
[
0
][
0
]
ax
.
plot
(
sim
.
t
,
sim
.
y
[
0
:
3
].
T
)
ax
=
axs
[
1
][
0
]
ax
.
plot
(
sim
.
t
,
sim
.
y
[
3
:
7
].
T
)
ax
=
axs
[
0
][
1
]
ax
.
plot
(
sim
.
t
,
sim
.
y
[
7
:
10
].
T
)
ax
=
axs
[
1
][
1
]
ax
.
plot
(
sim
.
t
,
sim
.
y
[
10
:
13
].
T
)
plt
.
show
()
# mavion_env = MavionEnv(mavion)
# st1 = mavion_env.reset()[0]
# print("reset :", st1)
# mavion_env.state = st
# st2 = mavion_env.step(u)[0]
# print("new state :", st2)
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment