-
BRUN Lelio authoredf1896ffa
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
corelang.ml 50.53 KiB
(********************************************************************)
(* *)
(* The LustreC compiler toolset / The LustreC Development Team *)
(* Copyright 2012 - -- ONERA - CNRS - INPT *)
(* *)
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *)
(* under the terms of the GNU Lesser General Public License *)
(* version 2.1. *)
(* *)
(********************************************************************)
open Utils
open Format
open Lustre_types
open Machine_code_types
(*open Dimension*)
module VDeclModule = struct
(* Node module *)
type t = var_decl
let compare v1 v2 = compare v1.var_id v2.var_id
end
module VMap = struct
include Map.Make (VDeclModule)
let pp ?(comment = "") pp_val fmt m =
Format.fprintf fmt "@[<hv 0>@[<hv 2>{ %s" comment;
iter (fun key v -> Format.fprintf fmt "@ %s -> %a" key.var_id pp_val v) m;
Format.fprintf fmt "@]@ }@]"
end
module VSet : sig
include Set.S
val pp : Format.formatter -> t -> unit
val get : ident -> t -> elt
end
with type elt = var_decl = struct
include Set.Make (VDeclModule)
let pp fmt s =
Format.fprintf fmt "{@[%a}@]" (pp_comma_list Printers.pp_var) (elements s)
(* Strangley the find_first function of Set.Make is incorrect (at the current
time of writting this comment. Had to switch to lists *)
let get id s = List.find (fun v -> v.var_id = id) (elements s)
end
let dummy_type_dec = { ty_dec_desc = Tydec_any; ty_dec_loc = Location.dummy }
let dummy_clock_dec = { ck_dec_desc = Ckdec_any; ck_dec_loc = Location.dummy }
(************************************************************)
(* *)
let fv_expr e =
let open ISet in
let rec fv s e =
match e.expr_desc with
| Expr_ident x ->
add x s
| Expr_tuple es | Expr_array es ->
List.fold_left fv s es
| Expr_ite (e1, e2, e3) ->
fv (fv (fv s e1) e2) e3
| Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
fv (fv s e1) e2
| Expr_access (e1, d) | Expr_power (e1, d) ->
union (fv s e1) (Dimension.fv d)
| Expr_pre e ->
fv s e
| Expr_when (e, x, _) ->
fv (add x s) e
| Expr_merge (x, br) ->
List.fold_left (fun s (_, e) -> fv s e) (add x s) br
| Expr_appl (x, e, r) ->
fv (add x (Option.fold ~none:s ~some:(fv s) r)) e
| Expr_const _ ->
s
in
fv ISet.empty e
let mktyp loc d = { ty_dec_desc = d; ty_dec_loc = loc }
let mkclock loc d = { ck_dec_desc = d; ck_dec_loc = loc }
let mkvar_decl loc ?(var_is_contract = false) ?(orig = false)
(id, ty_dec, ck_dec, is_const, value, parentid) =
assert (value = None || is_const);
{
var_id = id;
var_orig = orig;
var_dec_type = ty_dec;
var_dec_clock = ck_dec;
var_dec_const = is_const;
var_dec_value = value;
var_parent_nodeid = parentid;
var_type = Types.new_var ();
var_clock = Clocks.new_var true;
var_loc = loc;
var_is_contract;
}
let dummy_var_decl name typ =
{
var_id = name;
var_orig = false;
var_dec_type = dummy_type_dec;
var_dec_clock = dummy_clock_dec;
var_dec_const = false;
var_dec_value = None;
var_parent_nodeid = None;
var_type = typ;
var_clock = Clocks.new_ck Clocks.Cvar true;
var_loc = Location.dummy;
var_is_contract = false;
}
let mkexpr loc d =
{
expr_tag = Utils.new_tag ();
expr_desc = d;
expr_type = Types.new_var ();
expr_clock = Clocks.new_var true;
expr_delay = Delay.new_var ();
expr_annot = None;
expr_loc = loc;
}
let var_decl_of_const ?(parentid = None) c =
{
var_id = c.const_id;
var_orig = true;
var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
var_dec_const = true;
var_dec_value = None;
var_parent_nodeid = parentid;
var_type = c.const_type;
var_clock = Clocks.new_var false;
var_loc = c.const_loc;
var_is_contract = false;
}
let mk_new_name used id =
let rec new_name name cpt =
if used name then new_name (sprintf "_%s_%i" id cpt) (cpt + 1) else name
in
new_name id 1
let mkeq loc (lhs, rhs) = { eq_lhs = lhs; eq_rhs = rhs; eq_loc = loc }
let mkassert loc expr = { assert_loc = loc; assert_expr = expr }
let mktop_decl top_decl_loc top_decl_owner top_decl_itf top_decl_desc =
{ top_decl_desc; top_decl_loc; top_decl_owner; top_decl_itf }
let mkpredef_call loc funname args =
mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
let is_clock_dec_type cty = match cty with Tydec_clock _ -> true | _ -> false
let const_of_top top_decl =
match top_decl.top_decl_desc with Const c -> c | _ -> assert false
let node_of_top top_decl =
match top_decl.top_decl_desc with Node nd -> nd | _ -> raise Not_found
let imported_node_of_top top_decl =
match top_decl.top_decl_desc with
| ImportedNode ind ->
ind
| _ ->
assert false
let typedef_of_top top_decl =
match top_decl.top_decl_desc with TypeDef tdef -> tdef | _ -> assert false
let dependency_of_top top_decl =
match top_decl.top_decl_desc with
| Open (local, dep) ->
local, dep
| _ ->
assert false
let consts_of_enum_type top_decl =
match top_decl.top_decl_desc with
| TypeDef tdef -> (
match tdef.tydef_desc with
| Tydec_enum tags ->
List.map
(fun tag ->
let cdecl =
{
const_id = tag;
const_loc = top_decl.top_decl_loc;
const_value = Const_tag tag;
const_type = Type_predef.type_const tdef.tydef_id;
}
in
{ top_decl with top_decl_desc = Const cdecl })
tags
| _ ->
[])
| _ ->
assert false
(************************************************************)
(* Eexpr functions *)
(************************************************************)
let empty_contract =
{
consts = [];
locals = [];
stmts = [];
assume = [];
guarantees = [];
modes = [];
imports = [];
spec_loc = Location.dummy;
proof = None;
}
(* For const declaration we do as for regular lustre node. But for local flows
we registered the variable and the lustre flow definition *)
let mk_contract_var id is_const type_opt expr loc =
let typ = match type_opt with None -> mktyp loc Tydec_any | Some t -> t in
if is_const then
let v =
mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, Some expr, None)
in
{ empty_contract with consts = [ v ]; spec_loc = loc }
else
let v =
mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, None, None)
in
let eq = mkeq loc ([ id ], expr) in
{ empty_contract with locals = [ v ]; stmts = [ Eq eq ]; spec_loc = loc }
let eexpr_add_name eexpr eexpr_name = { eexpr with eexpr_name }
let mk_contract_guarantees name eexpr proof =
{
empty_contract with
guarantees = [ eexpr_add_name eexpr name ];
spec_loc = eexpr.eexpr_loc;
proof;
}
let mk_contract_assume name eexpr =
{
empty_contract with
assume = [ eexpr_add_name eexpr name ];
spec_loc = eexpr.eexpr_loc;
}
let mk_contract_mode id rl el loc =
{
empty_contract with
modes = [ { mode_id = id; require = rl; ensure = el; mode_loc = loc } ];
spec_loc = loc;
}
let mk_contract_import id ins outs loc =
{
empty_contract with
imports =
[ { import_nodeid = id; inputs = ins; outputs = outs; import_loc = loc } ];
spec_loc = loc;
}
let merge_proofs p1 p2 =
let merge_proofs p1 p2 =
match p1, p2 with Kinduction k1, Kinduction k2 -> Kinduction (max k1 k2)
in
match p1, p2 with
| Some p1, Some p2 ->
Some (merge_proofs p1 p2)
| Some p, None | None, Some p ->
Some p
| None, None ->
None
let merge_contracts ann1 ann2 =
(* keeping the first item loc *)
{
consts = ann1.consts @ ann2.consts;
locals = ann1.locals @ ann2.locals;
stmts = ann1.stmts @ ann2.stmts;
assume = ann1.assume @ ann2.assume;
guarantees = ann1.guarantees @ ann2.guarantees;
modes = ann1.modes @ ann2.modes;
imports = ann1.imports @ ann2.imports;
spec_loc = ann1.spec_loc;
proof = merge_proofs ann1.proof ann2.proof;
}
let mkeexpr loc expr =
{
eexpr_tag = Utils.new_tag ();
eexpr_qfexpr = expr;
eexpr_quantifiers = [];
eexpr_name = None;
eexpr_type = Types.new_var ();
eexpr_clock = Clocks.new_var true;
eexpr_loc = loc;
}
let extend_eexpr q e = { e with eexpr_quantifiers = q @ e.eexpr_quantifiers }
(* let mkepredef_call loc funname args = mkeexpr loc (EExpr_appl (funname,
mkeexpr loc (EExpr_tuple args), None))
let mkepredef_unary_call loc funname arg = mkeexpr loc (EExpr_appl (funname,
arg, None)) *)
let merge_expr_annot ann1 ann2 =
match ann1, ann2 with
| None, None ->
assert false
| Some _, None ->
ann1
| None, Some _ ->
ann2
| Some ann1, Some ann2 ->
Some { annots = ann1.annots @ ann2.annots; annot_loc = ann1.annot_loc }
let update_expr_annot node_id e annot =
List.iter
(fun (key, _) -> Annotations.add_expr_ann node_id e.expr_tag key)
annot.annots;
e.expr_annot <- merge_expr_annot e.expr_annot (Some annot);
e
let mkinstr ?lustre_eq ?(instr_spec = []) instr_desc =
{ instr_desc; (* lustre_expr = lustre_expr; *)
instr_spec; lustre_eq }
let get_instr_desc i = i.instr_desc
let update_instr_desc i id = { i with instr_desc = id }
(***********************************************************)
(* Fast access to nodes, by name *)
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
let consts_table = Hashtbl.create 30
let pp_node_table fmt () =
Format.fprintf fmt "{ /* node table */@.";
Hashtbl.iter
(fun id nd -> Format.fprintf fmt "%s |-> %a" id Printers.pp_short_decl nd)
node_table;
Format.fprintf fmt "}@."
let pp_consts_table fmt () =
Format.fprintf fmt "{ /* consts table */@.";
Hashtbl.iter
(fun id const ->
Format.fprintf
fmt
"%s |-> %a"
id
Printers.pp_const_decl
(const_of_top const))
consts_table;
Format.fprintf fmt "}@."
let node_name td =
match td.top_decl_desc with
| Node nd ->
nd.node_id
| ImportedNode nd ->
nd.nodei_id
| _ ->
assert false
let is_generic_node td =
match td.top_decl_desc with
| Node nd ->
List.exists (fun v -> v.var_dec_const) nd.node_inputs
| ImportedNode nd ->
List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
| _ ->
assert false
let node_inputs td =
match td.top_decl_desc with
| Node nd ->
nd.node_inputs
| ImportedNode nd ->
nd.nodei_inputs
| _ ->
assert false
let node_from_name id = Hashtbl.find node_table id
let update_node id top = Hashtbl.replace node_table id top
let is_imported_node td =
match td.top_decl_desc with
| Node _ ->
false
| ImportedNode _ ->
true
| _ ->
assert false
let is_node_contract nd =
match nd.node_spec with Some (Contract _) -> true | _ -> false
let get_node_contract nd =
match nd.node_spec with Some (Contract c) -> c | _ -> assert false
let is_contract td =
match td.top_decl_desc with Node nd -> is_node_contract nd | _ -> false
(* alias and type definition table *)
let mktop = mktop_decl Location.dummy !Options.dest_dir false
let top_int_type = mktop (TypeDef { tydef_id = "int"; tydef_desc = Tydec_int })
let top_bool_type =
mktop (TypeDef { tydef_id = "bool"; tydef_desc = Tydec_bool })
(* let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc =
Tydec_float}) *)
let top_real_type =
mktop (TypeDef { tydef_id = "real"; tydef_desc = Tydec_real })
let type_table =
Utils.create_hashtable
20
[
Tydec_int, top_int_type;
Tydec_bool, top_bool_type;
(* Tydec_float, top_float_type; *)
Tydec_real, top_real_type;
]
let pp_type_table fmt () =
Format.fprintf fmt "{ /* type table */@.";
Hashtbl.iter
(fun tydec tdef ->
Format.fprintf
fmt
"%a |-> %a"
Printers.pp_var_type_dec_desc
tydec
Printers.pp_typedef
(typedef_of_top tdef))
type_table;
Format.fprintf fmt "}@."
let rec is_user_type typ =
match typ with
| Tydec_int
| Tydec_bool
| Tydec_real (* | Tydec_float *)
| Tydec_any
| Tydec_const _ ->
false
| Tydec_clock typ' ->
is_user_type typ'
| _ ->
true
let get_repr_type typ =
let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
if is_user_type typ_def then typ else typ_def
let rec coretype_equal ty1 ty2 =
let res =
match ty1, ty2 with
| Tydec_any, _ | _, Tydec_any ->
assert false
| Tydec_const _, Tydec_const _ ->
get_repr_type ty1 = get_repr_type ty2
| Tydec_const _, _ ->
let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc in
(not (is_user_type ty1')) && coretype_equal ty1' ty2
| _, Tydec_const _ ->
coretype_equal ty2 ty1
| Tydec_int, Tydec_int
| Tydec_real, Tydec_real
(* | Tydec_float , Tydec_float *)
| Tydec_bool, Tydec_bool ->
true
| Tydec_clock ty1, Tydec_clock ty2 ->
coretype_equal ty1 ty2
| Tydec_array (d1, ty1), Tydec_array (d2, ty2) ->
Dimension.equal d1 d2 && coretype_equal ty1 ty2
| Tydec_enum tl1, Tydec_enum tl2 ->
List.sort compare tl1 = List.sort compare tl2
| Tydec_struct fl1, Tydec_struct fl2 ->
List.length fl1 = List.length fl2
&& List.for_all2
(fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
(List.sort (fun (f1, _) (f2, _) -> compare f1 f2) fl1)
(List.sort (fun (f1, _) (f2, _) -> compare f1 f2) fl2)
| _ ->
false
in
(*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc
ty1 Printers.pp_var_type_dec_desc ty2 res;*)
res
let tag_default = "default"
let const_is_bool c =
match c with Const_tag t -> t = tag_true || t = tag_false | _ -> false
(* Computes the negation of a boolean constant *)
let const_negation c =
assert (const_is_bool c);
match c with
| Const_tag t when t = tag_true ->
Const_tag tag_false
| _ ->
Const_tag tag_true
let const_or c1 c2 =
assert (const_is_bool c1 && const_is_bool c2);
match c1, c2 with
| Const_tag t1, _ when t1 = tag_true ->
c1
| _, Const_tag t2 when t2 = tag_true ->
c2
| _ ->
Const_tag tag_false
let const_and c1 c2 =
assert (const_is_bool c1 && const_is_bool c2);
match c1, c2 with
| Const_tag t1, _ when t1 = tag_false ->
c1
| _, Const_tag t2 when t2 = tag_false ->
c2
| _ ->
Const_tag tag_true
let const_xor c1 c2 =
assert (const_is_bool c1 && const_is_bool c2);
match c1, c2 with
| Const_tag t1, Const_tag t2 when t1 <> t2 ->
Const_tag tag_true
| _ ->
Const_tag tag_false
let const_impl c1 c2 =
assert (const_is_bool c1 && const_is_bool c2);
match c1, c2 with
| Const_tag t1, _ when t1 = tag_false ->
Const_tag tag_true
| _, Const_tag t2 when t2 = tag_true ->
Const_tag tag_true
| _ ->
Const_tag tag_false
(* To guarantee uniqueness of tags in enum types *)
let tag_table =
Utils.create_hashtable
20
[ tag_true, top_bool_type; tag_false, top_bool_type ]
(* To guarantee uniqueness of fields in struct types *)
let field_table = Utils.create_hashtable 20 []
let get_enum_type_tags cty =
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc
cty;*)
match cty with
| Tydec_bool ->
[ tag_true; tag_false ]
| Tydec_const _ -> (
match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
| Tydec_enum tl ->
tl
| _ ->
assert false)
| _ ->
assert false
let get_struct_type_fields cty =
match cty with
| Tydec_const _ -> (
match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
| Tydec_struct fl ->
fl
| _ ->
assert false)
| _ ->
assert false
let const_of_bool b = Const_tag (if b then tag_true else tag_false)
(* let get_const c = snd (Hashtbl.find consts_table c) *)
let ident_of_expr expr =
match expr.expr_desc with Expr_ident id -> id | _ -> assert false
(* Generate a new ident expression from a declared variable *)
let expr_of_vdecl v =
{
expr_tag = Utils.new_tag ();
expr_desc = Expr_ident v.var_id;
expr_type = v.var_type;
expr_clock = v.var_clock;
expr_delay = Delay.new_var ();
expr_annot = None;
expr_loc = v.var_loc;
}
(* Caution, returns an untyped and unclocked expression *)
let expr_of_ident id loc =
{
expr_tag = Utils.new_tag ();
expr_desc = Expr_ident id;
expr_type = Types.new_var ();
expr_clock = Clocks.new_var true;
expr_delay = Delay.new_var ();
expr_loc = loc;
expr_annot = None;
}
let is_tuple_expr expr =
match expr.expr_desc with Expr_tuple _ -> true | _ -> false
let expr_list_of_expr expr =
match expr.expr_desc with Expr_tuple elist -> elist | _ -> [ expr ]
let expr_of_expr_list loc elist =
match elist with
| [ t ] ->
{ t with expr_loc = loc }
| t :: _ ->
let tlist = List.map (fun e -> e.expr_type) elist in
let clist = List.map (fun e -> e.expr_clock) elist in
{
t with
expr_desc = Expr_tuple elist;
expr_type = Type_predef.type_tuple tlist;
expr_clock = Clock_predef.ck_tuple clist;
expr_tag = Utils.new_tag ();
expr_loc = loc;
}
| _ ->
assert false
let call_of_expr expr =
match expr.expr_desc with
| Expr_appl (f, args, r) ->
f, expr_list_of_expr args, r
| _ ->
assert false
(* Conversion from dimension expr to standard expr, for the purpose of printing,
typing, etc... *)
let rec expr_of_dimension dim =
let open Dimension in
let expr =
match dim.dim_desc with
| Dbool b ->
mkexpr dim.dim_loc (Expr_const (const_of_bool b))
| Dint i ->
mkexpr dim.dim_loc (Expr_const (Const_int i))
| Dident id ->
mkexpr dim.dim_loc (Expr_ident id)
| Dite (c, t, e) ->
mkexpr
dim.dim_loc
(Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
| Dappl (id, args) ->
mkexpr
dim.dim_loc
(Expr_appl
( id,
expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args),
None ))
| Dlink dim' ->
expr_of_dimension dim'
| Dvar | Dunivar ->
Format.eprintf
"internal error: Corelang.expr_of_dimension %a@."
Dimension.pp
dim;
assert false
in
{ expr with expr_type = Types.new_ty Types.type_int }
let dimension_of_const loc const =
let open Dimension in
match const with
| Const_int i ->
mkdim_int loc i
| Const_tag t when t = tag_true || t = tag_false ->
mkdim_bool loc (t = tag_true)
| _ ->
raise InvalidDimension
(* Conversion from standard expr to dimension expr, for the purpose of injecting
static call arguments into dimension expressions *)
let rec dimension_of_expr expr =
let open Dimension in
match expr.expr_desc with
| Expr_const c ->
dimension_of_const expr.expr_loc c
| Expr_ident id ->
mkdim_ident expr.expr_loc id
| Expr_appl (f, args, None) when Basic_library.is_expr_internal_fun expr ->
let k =
Types.get_static_value (Env.lookup_value Basic_library.type_env f)
in
if k = None then raise InvalidDimension;
mkdim_appl
expr.expr_loc
f
(List.map dimension_of_expr (expr_list_of_expr args))
| Expr_ite (i, t, e) ->
mkdim_ite
expr.expr_loc
(dimension_of_expr i)
(dimension_of_expr t)
(dimension_of_expr e)
| _ ->
raise InvalidDimension
(* not a simple dimension expression *)
let sort_handlers hl = List.sort (fun (t, _) (t', _) -> compare t t') hl
let rec is_eq_const c1 c2 =
match c1, c2 with
| Const_real r1, Const_real _ ->
Real.eq r1 r1
| Const_struct lcl1, Const_struct lcl2 ->
List.length lcl1 = List.length lcl2
&& List.for_all2
(fun (l1, c1) (l2, c2) -> l1 = l2 && is_eq_const c1 c2)
lcl1
lcl2
| _ ->
c1 = c2
let rec is_eq_expr e1 e2 =
match e1.expr_desc, e2.expr_desc with
| Expr_const c1, Expr_const c2 ->
is_eq_const c1 c2
| Expr_ident i1, Expr_ident i2 ->
i1 = i2
| Expr_array el1, Expr_array el2 | Expr_tuple el1, Expr_tuple el2 ->
List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2
| Expr_arrow (e1, e2), Expr_arrow (e1', e2') ->
is_eq_expr e1 e1' && is_eq_expr e2 e2'
| Expr_fby (e1, e2), Expr_fby (e1', e2') ->
is_eq_expr e1 e1' && is_eq_expr e2 e2'
| Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) ->
is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
(* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' &&
is_eq_expr e2 e2' *)
(* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
| Expr_pre e, Expr_pre e' ->
is_eq_expr e e'
| Expr_when (e, i, l), Expr_when (e', i', l') ->
l = l' && i = i' && is_eq_expr e e'
| Expr_merge (i, hl), Expr_merge (i', hl') ->
i = i'
&& List.for_all2
(fun (t, h) (t', h') -> t = t' && is_eq_expr h h')
(sort_handlers hl)
(sort_handlers hl')
| Expr_appl (i, e, r), Expr_appl (i', e', r') ->
i = i' && r = r' && is_eq_expr e e'
| Expr_power (e1, i1), Expr_power (e2, i2)
| Expr_access (e1, i1), Expr_access (e2, i2) ->
is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
| _ ->
false
let get_node_vars nd =
nd.node_inputs @ List.map fst nd.node_locals @ nd.node_outputs
let mk_new_node_name nd id =
let used_vars = get_node_vars nd in
let used v = List.exists (fun vdecl -> vdecl.var_id = v) used_vars in
mk_new_name used id
let get_var id var_list = List.find (fun v -> v.var_id = id) var_list
let get_node_var id node =
try get_var id (get_node_vars node)
with Not_found ->
(* Format.eprintf "Unable to find variable %s in node %s@.@?" id
node.node_id; *)
raise Not_found
let get_eqs stmts =
List.fold_right
(fun stmt (res_eq, res_aut) ->
match stmt with
| Eq eq ->
eq :: res_eq, res_aut
| Aut aut ->
res_eq, aut :: res_aut)
stmts
([], [])
let get_node_eqs =
let table_eqs = Hashtbl.create 23 in
fun nd ->
try
let old, res = Hashtbl.find table_eqs nd.node_id in
if old == nd.node_stmts then res else raise Not_found
with Not_found ->
let res = get_eqs nd.node_stmts in
Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
res
let get_contract_eqs c = get_eqs c.stmts
let get_node_eq id node =
let eqs, _ = get_node_eqs node in
try List.find (fun eq -> List.mem id eq.eq_lhs) eqs
with Not_found -> (* Shall be defined in automata auts *)
raise Not_found
let get_nodes prog =
List.fold_left
(fun nodes decl ->
match decl.top_decl_desc with
| Node _ ->
decl :: nodes
| Const _ | ImportedNode _ | Include _ | Open _ | TypeDef _ ->
nodes)
[]
prog
|> List.rev
let get_imported_nodes prog =
List.fold_left
(fun nodes decl ->
match decl.top_decl_desc with
| ImportedNode _ ->
decl :: nodes
| Const _ | Node _ | Include _ | Open _ | TypeDef _ ->
nodes)
[]
prog
let get_consts prog =
List.fold_right
(fun decl consts ->
match decl.top_decl_desc with
| Const _ ->
decl :: consts
| Node _ | ImportedNode _ | Include _ | Open _ | TypeDef _ ->
consts)
prog
[]
let get_typedefs prog =
List.fold_right
(fun decl types ->
match decl.top_decl_desc with
| TypeDef _ ->
decl :: types
| Node _ | ImportedNode _ | Include _ | Open _ | Const _ ->
types)
prog
[]
let get_dependencies prog =
List.fold_right
(fun decl deps ->
match decl.top_decl_desc with
| Open _ ->
decl :: deps
| Node _ | ImportedNode _ | TypeDef _ | Include _ | Const _ ->
deps)
prog
[]
let get_node_interface nd =
{
nodei_id = nd.node_id;
nodei_type = nd.node_type;
nodei_clock = nd.node_clock;
nodei_inputs = nd.node_inputs;
nodei_outputs = nd.node_outputs;
nodei_stateless = nd.node_dec_stateless;
nodei_spec = nd.node_spec;
(* nodei_annot = nd.node_annot; *)
nodei_prototype = None;
nodei_in_lib = [];
nodei_iscontract = nd.node_iscontract;
}
(************************************************************************)
(* Renaming / Copying *)
let copy_var_decl vdecl =
mkvar_decl
vdecl.var_loc
~orig:vdecl.var_orig
( vdecl.var_id,
vdecl.var_dec_type,
vdecl.var_dec_clock,
vdecl.var_dec_const,
vdecl.var_dec_value,
vdecl.var_parent_nodeid )
let copy_const cdecl = { cdecl with const_type = Types.new_var () }
let copy_node nd =
{
nd with
node_type = Types.new_var ();
node_clock = Clocks.new_var true;
node_inputs = List.map copy_var_decl nd.node_inputs;
node_outputs = List.map copy_var_decl nd.node_outputs;
node_locals = List.map (fun (v, i) -> copy_var_decl v, i) nd.node_locals;
node_gencalls = [];
node_checks = [];
node_stateless = None;
}
let copy_top top =
match top.top_decl_desc with
| Node nd ->
{ top with top_decl_desc = Node (copy_node nd) }
| Const c ->
{ top with top_decl_desc = Const (copy_const c) }
| _ ->
top
let copy_prog top_list = List.map copy_top top_list
let rec rename_static rename cty =
match cty with
| Tydec_array (d, cty') ->
Tydec_array (Dimension.expr_replace_expr rename d, rename_static rename cty')
| Tydec_clock cty ->
Tydec_clock (rename_static rename cty)
| Tydec_struct fl ->
Tydec_struct (List.map (fun (f, cty) -> f, rename_static rename cty) fl)
| _ ->
cty
let rename_carrier rename cck =
match cck with
| Ckdec_bool cl ->
Ckdec_bool (List.map (fun (c, l) -> rename c, l) cl)
| _ ->
cck
(*Format.eprintf "Types.rename_static %a = %a@." pp ty pp res; res*)
(* applies the renaming function [fvar] to all variables of expression [expr] *)
(* let rec expr_replace_var fvar expr = *)
(* { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc } *)
(* and expr_desc_replace_var fvar expr_desc = *)
(* match expr_desc with *)
(* | Expr_const _ -> expr_desc *)
(* | Expr_ident i -> Expr_ident (fvar i) *)
(* | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el) *)
(* | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d) *)
(* | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d) *)
(* | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el) *)
(* | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var
fvar t, expr_replace_var fvar e) *)
(* | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1,
expr_replace_var fvar e2) *)
(* | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var
fvar e2) *)
(* | Expr_pre e' -> Expr_pre (expr_replace_var fvar e') *)
(* | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l) *)
(* | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t,
expr_replace_var fvar h)) hl) *)
(* | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e',
Utils.option_map (expr_replace_var fvar) i') *)
let rec rename_expr f_node f_var expr =
{ expr with expr_desc = rename_expr_desc f_node f_var expr.expr_desc }
and rename_expr_desc f_node f_var expr_desc =
let re = rename_expr f_node f_var in
match expr_desc with
| Expr_const _ ->
expr_desc
| Expr_ident i ->
Expr_ident (f_var i)
| Expr_array el ->
Expr_array (List.map re el)
| Expr_access (e1, d) ->
Expr_access (re e1, d)
| Expr_power (e1, d) ->
Expr_power (re e1, d)
| Expr_tuple el ->
Expr_tuple (List.map re el)
| Expr_ite (c, t, e) ->
Expr_ite (re c, re t, re e)
| Expr_arrow (e1, e2) ->
Expr_arrow (re e1, re e2)
| Expr_fby (e1, e2) ->
Expr_fby (re e1, re e2)
| Expr_pre e' ->
Expr_pre (re e')
| Expr_when (e', i, l) ->
Expr_when (re e', f_var i, l)
| Expr_merge (i, hl) ->
Expr_merge (f_var i, List.map (fun (t, h) -> t, re h) hl)
| Expr_appl (i, e', i') ->
Expr_appl (f_node i, re e', Utils.option_map re i')
let rename_var f_var v =
{
(copy_var_decl v) with
var_id = f_var v.var_id;
var_type = v.var_type;
var_clock = v.var_clock;
}
let rename_vars f_var = List.map (rename_var f_var)
let rec rename_eq f_node f_var eq =
{
eq with
eq_lhs = List.map f_var eq.eq_lhs;
eq_rhs = rename_expr f_node f_var eq.eq_rhs;
}
and rename_handler f_node f_var h =
{
h with
hand_state = f_var h.hand_state;
hand_unless =
List.map
(fun (l, e, b, id) -> l, rename_expr f_node f_var e, b, f_var id)
h.hand_unless;
hand_until =
List.map
(fun (l, e, b, id) -> l, rename_expr f_node f_var e, b, f_var id)
h.hand_until;
hand_locals = rename_vars f_var h.hand_locals;
hand_stmts = rename_stmts f_node f_var h.hand_stmts;
hand_annots = rename_annots f_node f_var h.hand_annots;
}
and rename_aut f_node f_var aut =
{
aut with
aut_id = f_var aut.aut_id;
aut_handlers = List.map (rename_handler f_node f_var) aut.aut_handlers;
}
and rename_stmts f_node f_var stmts =
List.map
(fun stmt ->
match stmt with
| Eq eq ->
Eq (rename_eq f_node f_var eq)
| Aut at ->
Aut (rename_aut f_node f_var at))
stmts
and rename_annotl f_node f_var annots =
List.map (fun (key, value) -> key, rename_eexpr f_node f_var value) annots
and rename_annot f_node f_var annot =
{ annot with annots = rename_annotl f_node f_var annot.annots }
and rename_annots f_node f_var annots =
List.map (rename_annot f_node f_var) annots
and rename_eexpr f_node f_var ee =
{
ee with
eexpr_tag = Utils.new_tag ();
eexpr_qfexpr = rename_expr f_node f_var ee.eexpr_qfexpr;
eexpr_quantifiers =
List.map
(fun (typ, vdecls) -> typ, rename_vars f_var vdecls)
ee.eexpr_quantifiers;
}
and rename_mode f_node f_var m =
let rename_ee = rename_eexpr f_node f_var in
{
m with
require = List.map rename_ee m.require;
ensure = List.map rename_ee m.ensure;
}
let rename_import f_node f_var imp =
let rename_expr = rename_expr f_node f_var in
{
imp with
import_nodeid = f_node imp.import_nodeid;
inputs = rename_expr imp.inputs;
outputs = rename_expr imp.outputs;
}
let rename_contract f_var f_node c =
let rename_var = rename_var f_var in
let rename_vars = List.map rename_var in
let rename_eexpr = rename_eexpr f_node f_var in
let rename_stmts = rename_stmts f_node f_var in
{
c with
consts = rename_vars c.consts;
locals = rename_vars c.locals;
stmts = rename_stmts c.stmts;
assume = List.map rename_eexpr c.assume;
guarantees = List.map rename_eexpr c.guarantees;
modes = List.map (rename_mode f_node f_var) c.modes;
imports = List.map (rename_import f_node f_var) c.imports;
}
let rename_node f_node f_var nd =
let f_var x =
(* checking that this is actually a local variable *)
if List.exists (fun v -> v.var_id = x) (get_node_vars nd) then f_var x
else x
in
let rename_var = rename_var f_var in
let rename_vars = List.map rename_var in
let rename_expr = rename_expr f_node f_var in
let rename_stmts = rename_stmts f_node f_var in
let inputs = rename_vars nd.node_inputs in
let outputs = rename_vars nd.node_outputs in
let locals =
List.map (fun (v, i) -> rename_var v, Option.map f_var i) nd.node_locals
in
let gen_calls = List.map rename_expr nd.node_gencalls in
let node_checks = List.map (Dimension.rename f_node f_var) nd.node_checks in
let node_asserts =
List.map
(fun a ->
{
a with
assert_expr =
(let expr = a.assert_expr in
rename_expr expr);
})
nd.node_asserts
in
let node_stmts = rename_stmts nd.node_stmts in
let spec =
option_map
(fun s ->
match s with
| NodeSpec id ->
NodeSpec (f_node id)
| Contract c ->
Contract (rename_contract f_var f_node c))
nd.node_spec
in
let annot = rename_annots f_node f_var nd.node_annot in
{
node_id = f_node nd.node_id;
node_type = nd.node_type;
node_clock = nd.node_clock;
node_inputs = inputs;
node_outputs = outputs;
node_locals = locals;
node_gencalls = gen_calls;
node_checks;
node_asserts;
node_stmts;
node_dec_stateless = nd.node_dec_stateless;
node_stateless = nd.node_stateless;
node_spec = spec;
node_annot = annot;
node_iscontract = nd.node_iscontract;
}
let rename_const f_const c = { c with const_id = f_const c.const_id }
let rename_typedef f_var t =
match t.tydef_desc with
| Tydec_enum tags ->
{ t with tydef_desc = Tydec_enum (List.map f_var tags) }
| _ ->
t
let rename_prog f_node f_var f_const prog =
List.rev
(List.fold_left
(fun accu top ->
(match top.top_decl_desc with
| Node nd ->
{ top with top_decl_desc = Node (rename_node f_node f_var nd) }
| Const c ->
{ top with top_decl_desc = Const (rename_const f_const c) }
| TypeDef tdef ->
{ top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
| ImportedNode _ | Include _ | Open _ ->
top)
:: accu)
[]
prog)
(* Applies the renaming function [fvar] to every rhs only when the corresponding
lhs satisfies predicate [pvar] *)
let eq_replace_rhs_var pvar fvar eq =
let pvar l = List.exists pvar l in
let rec replace lhs rhs =
{
rhs with
expr_desc =
(match lhs with
| [] ->
assert false
| [ _ ] ->
if pvar lhs then rename_expr_desc (fun x -> x) fvar rhs.expr_desc
else rhs.expr_desc
| _ -> (
match rhs.expr_desc with
| Expr_tuple tl ->
Expr_tuple (List.map2 (fun v e -> replace [ v ] e) lhs tl)
| Expr_appl (f, arg, None) when Basic_library.is_expr_internal_fun rhs
->
let args = expr_list_of_expr arg in
Expr_appl
( f,
expr_of_expr_list arg.expr_loc (List.map (replace lhs) args),
None )
| Expr_array _
| Expr_access _
| Expr_power _
| Expr_const _
| Expr_ident _
| Expr_appl _ ->
if pvar lhs then rename_expr_desc (fun x -> x) fvar rhs.expr_desc
else rhs.expr_desc
| Expr_ite (c, t, e) ->
Expr_ite (replace lhs c, replace lhs t, replace lhs e)
| Expr_arrow (e1, e2) ->
Expr_arrow (replace lhs e1, replace lhs e2)
| Expr_fby (e1, e2) ->
Expr_fby (replace lhs e1, replace lhs e2)
| Expr_pre e' ->
Expr_pre (replace lhs e')
| Expr_when (e', i, l) ->
let i' = if pvar lhs then fvar i else i in
Expr_when (replace lhs e', i', l)
| Expr_merge (i, hl) ->
let i' = if pvar lhs then fvar i else i in
Expr_merge (i', List.map (fun (t, h) -> t, replace lhs h) hl)));
}
in
{ eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
(**********************************************************************)
(* Pretty printers *)
let pp_decl_type fmt tdecl =
match tdecl.top_decl_desc with
| Node nd ->
fprintf fmt "%s: " nd.node_id;
Utils.reset_names ();
fprintf fmt "%a" Types.pp nd.node_type
| ImportedNode ind ->
fprintf fmt "%s: " ind.nodei_id;
Utils.reset_names ();
fprintf fmt "%a" Types.pp ind.nodei_type
| Const _ | Include _ | Open _ | TypeDef _ ->
()
let pp_prog_type fmt tdecl_list =
Utils.Format.(
pp_print_list ~pp_open_box:pp_open_vbox0 pp_decl_type fmt tdecl_list)
let pp_decl_clock fmt cdecl =
match cdecl.top_decl_desc with
| Node nd ->
fprintf fmt "%s: " nd.node_id;
Utils.reset_names ();
fprintf fmt "%a@ " Clocks.pp nd.node_clock
| ImportedNode ind ->
fprintf fmt "%s: " ind.nodei_id;
Utils.reset_names ();
fprintf fmt "%a@ " Clocks.pp ind.nodei_clock
| Const _ | Include _ | Open _ | TypeDef _ ->
()
let pp_prog_clock fmt prog =
pp_print_list ~pp_sep:pp_print_nothing pp_decl_clock fmt prog
(* filling node table with internal functions *)
let vdecls_of_typ_ck cpt ty =
let loc = Location.dummy in
List.map
(fun _ ->
incr cpt;
let name = sprintf "_var_%d" !cpt in
mkvar_decl
loc
(name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false, None, None))
(Types.type_list_of_type ty)
let mk_internal_node id =
let spec = None in
let ty = Env.lookup_value Basic_library.type_env id in
let ck = Env.lookup_value Basic_library.clock_env id in
let tin, tout = Types.split_arrow ty in
(*eprintf "internal fun %s: %d -> %d@." id (List.length
(Types.type_list_of_type tin)) (List.length (Types.type_list_of_type
tout));*)
let cpt = ref (-1) in
mktop
(ImportedNode
{
nodei_id = id;
nodei_type = ty;
nodei_clock = ck;
nodei_inputs = vdecls_of_typ_ck cpt tin;
nodei_outputs = vdecls_of_typ_ck cpt tout;
nodei_stateless = Types.get_static_value ty <> None;
nodei_spec = spec;
(* nodei_annot = []; *)
nodei_prototype = None;
nodei_in_lib = [];
nodei_iscontract = false;
})
let add_internal_funs () =
List.iter
(fun id ->
let nd = mk_internal_node id in
Hashtbl.add node_table id nd)
Basic_library.internal_funs
(* Replace any occurence of a var in vars_to_replace by its associated
expression in defs until e does not contain any such variables *)
let rec substitute_expr vars_to_replace defs e =
let se = substitute_expr vars_to_replace defs in
{
e with
expr_desc =
(let ed = e.expr_desc in
match ed with
| Expr_const _ ->
ed
| Expr_array el ->
Expr_array (List.map se el)
| Expr_access (e1, d) ->
Expr_access (se e1, d)
| Expr_power (e1, d) ->
Expr_power (se e1, d)
| Expr_tuple el ->
Expr_tuple (List.map se el)
| Expr_ite (c, t, e) ->
Expr_ite (se c, se t, se e)
| Expr_arrow (e1, e2) ->
Expr_arrow (se e1, se e2)
| Expr_fby (e1, e2) ->
Expr_fby (se e1, se e2)
| Expr_pre e' ->
Expr_pre (se e')
| Expr_when (e', i, l) ->
Expr_when (se e', i, l)
| Expr_merge (i, hl) ->
Expr_merge (i, List.map (fun (t, h) -> t, se h) hl)
| Expr_appl (i, e', i') ->
Expr_appl (i, se e', option_map se i')
| Expr_ident i ->
if List.exists (fun v -> v.var_id = i) vars_to_replace then
let eq_i eq = eq.eq_lhs = [ i ] in
if List.exists eq_i defs then
let sub = List.find eq_i defs in
let sub' = se sub.eq_rhs in
sub'.expr_desc
else assert false
else ed);
}
let expr_to_eexpr expr =
{
eexpr_tag = expr.expr_tag;
eexpr_qfexpr = expr;
eexpr_quantifiers = [];
eexpr_name = None;
eexpr_type = expr.expr_type;
eexpr_clock = expr.expr_clock;
eexpr_loc = expr.expr_loc (*eexpr_normalized = None*);
}
(* and expr_desc_to_eexpr_desc expr_desc = *)
(* let conv = expr_to_eexpr in *)
(* match expr_desc with *)
(* | Expr_const c -> EExpr_const (match c with *)
(* | Const_int x -> EConst_int x *)
(* | Const_real x -> EConst_real x *)
(* | Const_float x -> EConst_float x *)
(* | Const_tag x -> EConst_tag x *)
(* | _ -> assert false *)
(* ) *)
(* | Expr_ident i -> EExpr_ident i *)
(* | Expr_tuple el -> EExpr_tuple (List.map conv el) *)
(* | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2) *)
(* | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2) *)
(* | Expr_pre e' -> EExpr_pre (conv e') *)
(* | Expr_appl (i, e', i') -> *)
(* EExpr_appl *)
(* (i, conv e', match i' with None -> None | Some(id, _) -> Some id) *)
(* | Expr_when _ *)
(* | Expr_merge _ -> assert false *)
(* | Expr_array _ *)
(* | Expr_access _ *)
(* | Expr_power _ -> assert false *)
(* | Expr_ite (c, t, e) -> assert false *)
(* | _ -> assert false *)
let rec get_expr_calls nodes e =
let get_calls = get_expr_calls nodes in
match e.expr_desc with
| Expr_const _ | Expr_ident _ ->
Utils.ISet.empty
| Expr_tuple el | Expr_array el ->
List.fold_left
(fun accu e -> Utils.ISet.union accu (get_calls e))
Utils.ISet.empty
el
| Expr_pre e1 | Expr_when (e1, _, _) | Expr_access (e1, _) | Expr_power (e1, _)
->
get_calls e1
| Expr_ite (c, t, e) ->
Utils.ISet.union
(Utils.ISet.union (get_calls c) (get_calls t))
(get_calls e)
| Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
Utils.ISet.union (get_calls e1) (get_calls e2)
| Expr_merge (_, hl) ->
List.fold_left
(fun accu (_, h) -> Utils.ISet.union accu (get_calls h))
Utils.ISet.empty
hl
| Expr_appl (i, e', _) ->
if Basic_library.is_expr_internal_fun e then get_calls e'
else
let calls = Utils.ISet.add i (get_calls e') in
let test n =
match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false
in
if List.exists test nodes then
match (List.find test nodes).top_decl_desc with
| Node nd ->
Utils.ISet.union (get_node_calls nodes nd) calls
| _ ->
assert false
else calls
and get_eq_calls nodes eq = get_expr_calls nodes eq.eq_rhs
and get_aut_handler_calls nodes h =
List.fold_left
(fun accu stmt ->
match stmt with
| Eq eq ->
Utils.ISet.union (get_eq_calls nodes eq) accu
| Aut aut' ->
Utils.ISet.union (get_aut_calls nodes aut') accu)
Utils.ISet.empty
h.hand_stmts
and get_aut_calls nodes aut =
List.fold_left
(fun accu h -> Utils.ISet.union (get_aut_handler_calls nodes h) accu)
Utils.ISet.empty
aut.aut_handlers
and get_node_calls nodes node =
let eqs, auts = get_node_eqs node in
let aut_calls =
List.fold_left
(fun accu aut -> Utils.ISet.union (get_aut_calls nodes aut) accu)
Utils.ISet.empty
auts
in
List.fold_left
(fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu)
aut_calls
eqs
let get_expr_vars e =
let rec get_expr_vars vars e = get_expr_desc_vars vars e.expr_desc
and get_expr_desc_vars vars expr_desc =
(*Format.eprintf "get_expr_desc_vars expr=%a@." Printers.pp_expr (mkexpr
Location.dummy expr_desc);*)
match expr_desc with
| Expr_const _ ->
vars
| Expr_ident x ->
Utils.ISet.add x vars
| Expr_tuple el | Expr_array el ->
List.fold_left get_expr_vars vars el
| Expr_pre e1 ->
get_expr_vars vars e1
| Expr_when (e1, c, _) ->
get_expr_vars (Utils.ISet.add c vars) e1
| Expr_access (e1, d) | Expr_power (e1, d) ->
List.fold_left get_expr_vars vars [ e1; expr_of_dimension d ]
| Expr_ite (c, t, e) ->
List.fold_left get_expr_vars vars [ c; t; e ]
| Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
List.fold_left get_expr_vars vars [ e1; e2 ]
| Expr_merge (c, hl) ->
List.fold_left
(fun vars (_, h) -> get_expr_vars vars h)
(Utils.ISet.add c vars)
hl
| Expr_appl (_, arg, None) ->
get_expr_vars vars arg
| Expr_appl (_, arg, Some r) ->
List.fold_left get_expr_vars vars [ arg; r ]
in
get_expr_vars Utils.ISet.empty e
(* let rec expr_has_arrows e =
* expr_desc_has_arrows e.expr_desc
* and expr_desc_has_arrows expr_desc =
* match expr_desc with
* | Expr_const _
* | Expr_ident _ -> false
* | Expr_tuple el
* | Expr_array el -> List.exists expr_has_arrows el
* | Expr_pre e1
* | Expr_when (e1, _, _)
* | Expr_access (e1, _)
* | Expr_power (e1, _) -> expr_has_arrows e1
* | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
* | Expr_arrow _
* | Expr_fby _ -> true
* | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
* | Expr_appl (_, e', _) -> expr_has_arrows e'
*
* and eq_has_arrows eq =
* expr_has_arrows eq.eq_rhs
* and aut_has_arrows aut = List.exists (fun h -> List.exists (fun stmt -> match stmt with Eq eq -> eq_has_arrows eq | Aut aut' -> aut_has_arrows aut') h.hand_stmts ) aut.aut_handlers
* and node_has_arrows node =
* let eqs, auts = get_node_eqs node in
* List.exists (fun eq -> eq_has_arrows eq) eqs || List.exists (fun aut -> aut_has_arrows aut) auts *)
let rec expr_contains_expr expr_tag expr =
let search = expr_contains_expr expr_tag in
expr.expr_tag = expr_tag
||
match expr.expr_desc with
| Expr_const _ ->
false
| Expr_array el ->
List.exists search el
| Expr_access (e1, _) | Expr_power (e1, _) ->
search e1
| Expr_tuple el ->
List.exists search el
| Expr_ite (c, t, e) ->
List.exists search [ c; t; e ]
| Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
List.exists search [ e1; e2 ]
| Expr_pre e' | Expr_when (e', _, _) ->
search e'
| Expr_merge (_, hl) ->
List.exists (fun (_, h) -> search h) hl
| Expr_appl (_, e', None) ->
search e'
| Expr_appl (_, e', Some e'') ->
List.exists search [ e'; e'' ]
| Expr_ident _ ->
false
(* Generate a new local [node] variable *)
let cpt_fresh = ref 0
let reset_cpt_fresh () = cpt_fresh := 0
let mk_fresh_var (parentid, ctx_env) loc ty ck =
let rec aux () =
incr cpt_fresh;
let s = Printf.sprintf "__%s_%d" parentid !cpt_fresh in
if List.exists (fun v -> v.var_id = s) ctx_env then aux ()
else
{
var_id = s;
var_orig = false;
var_dec_type = dummy_type_dec;
var_dec_clock = dummy_clock_dec;
var_dec_const = false;
var_dec_value = None;
var_parent_nodeid = Some parentid;
var_type = ty;
var_clock = ck;
var_loc = loc;
var_is_contract = false;
}
in
aux ()
let find_eq xl eqs =
let rec aux accu eqs =
match eqs with
| [] ->
Format.eprintf
"Looking for variables %a in the following equations@.%a@."
(pp_comma_list (fun fmt v -> Format.fprintf fmt "%s" v))
xl
Printers.pp_node_eqs
eqs;
assert false
| hd :: tl ->
if List.exists (fun x -> List.mem x hd.eq_lhs) xl then hd, accu @ tl
else aux (hd :: accu) tl
in
aux [] eqs
let get_node name prog =
let node_opt =
List.fold_left
(fun res top ->
match res, top.top_decl_desc with
| Some _, _ ->
res
| None, Node nd ->
(* Format.eprintf "Checking node %s = %s: %b@." nd.node_id name
(nd.node_id = name); *)
if nd.node_id = name then Some nd else res
| _ ->
None)
None
prog
in
try Utils.desome node_opt with Utils.DeSome -> raise Not_found
(* Pushing negations in expression. Subtitute operators whenever possible *)
let rec push_negations ?(neg = false) e =
let res =
let pn = push_negations in
let map desc =
(* Keeping clock and type info *)
let new_e = mkexpr e.expr_loc desc in
{ new_e with expr_type = e.expr_type; expr_clock = e.expr_clock }
in
match e.expr_desc with
| Expr_ite (g, t, e) ->
if neg then map (Expr_ite (pn g, pn e, pn t))
else map (Expr_ite (pn g, pn t, pn e))
| Expr_tuple t ->
map (Expr_tuple (List.map (pn ~neg) t))
| Expr_arrow (e1, e2) ->
map (Expr_arrow (pn ~neg e1, pn ~neg e2))
| Expr_fby (e1, e2) ->
map (Expr_fby (pn ~neg e1, pn ~neg e2))
| Expr_pre e ->
map (Expr_pre (pn ~neg e))
| Expr_appl (op, e', None) when op = "not" ->
if neg then push_negations ~neg:false e' else push_negations ~neg:true e'
| Expr_appl (op, e', None)
when List.mem op (Basic_library.bool_funs @ Basic_library.rel_funs) -> (
match op with
| "&&" ->
map (Expr_appl ((if neg then "||" else op), pn ~neg e', None))
| "||" ->
map (Expr_appl ((if neg then "&&" else op), pn ~neg e', None))
(* TODO xor/equi/impl *)
| "<" ->
map (Expr_appl ((if neg then ">=" else op), pn e', None))
| ">" ->
map (Expr_appl ((if neg then "<=" else op), pn e', None))
| "<=" ->
map (Expr_appl ((if neg then ">" else op), pn e', None))
| ">=" ->
map (Expr_appl ((if neg then "<" else op), pn e', None))
| "!=" ->
map (Expr_appl ((if neg then "=" else op), pn e', None))
| "=" ->
map (Expr_appl ((if neg then "!=" else op), pn e', None))
| _ ->
assert false)
| Expr_const c ->
if neg then map (Expr_const (const_negation c)) else e
| Expr_ident _ ->
if neg then mkpredef_call e.expr_loc "not" [ e ] else e
| Expr_appl _ ->
if neg then mkpredef_call e.expr_loc "not" [ e ] else e
| _ ->
assert false
(* no array, array access, power or merge/when *)
in
res
let rec add_pre_expr vars e =
let ap = add_pre_expr vars in
let desc =
match e.expr_desc with
| Expr_ite (g, t, e) ->
Expr_ite (ap g, ap t, ap e)
| Expr_tuple t ->
Expr_tuple (List.map ap t)
| Expr_arrow (e1, e2) ->
Expr_arrow (ap e1, ap e2)
| Expr_fby (e1, e2) ->
Expr_fby (ap e1, ap e2)
| Expr_pre e ->
Expr_pre (ap e)
| Expr_appl (op, e, opt) ->
Expr_appl (op, ap e, opt)
| Expr_const _ ->
e.expr_desc
| Expr_ident id ->
if List.mem id vars then Expr_pre e else e.expr_desc
| _ ->
assert false
(* no array, array access, power or merge/when yet *)
in
let new_e = mkexpr e.expr_loc desc in
{ new_e with expr_type = e.expr_type; expr_clock = e.expr_clock }
let mk_eq l e1 e2 = mkpredef_call l "=" [ e1; e2 ]
let rec partial_eval e =
let pa = partial_eval in
let edesc =
match e.expr_desc with
| Expr_const _ ->
e.expr_desc
| Expr_ident _ ->
e.expr_desc
| Expr_ite (g, t, e) -> (
let g, t, e = pa g, pa t, pa e in
match g.expr_desc with
| Expr_const (Const_tag tag) when tag = tag_true ->
t.expr_desc
| Expr_const (Const_tag tag) when tag = tag_false ->
e.expr_desc
| _ ->
Expr_ite (g, t, e))
| Expr_tuple t ->
Expr_tuple (List.map pa t)
| Expr_arrow (e1, e2) ->
Expr_arrow (pa e1, pa e2)
| Expr_fby (e1, e2) ->
Expr_fby (pa e1, pa e2)
| Expr_pre e ->
Expr_pre (pa e)
| Expr_appl (op, args, opt) ->
let args = pa args in
if Basic_library.is_expr_internal_fun e then
Basic_library.partial_eval op args opt
else Expr_appl (op, args, opt)
| Expr_array el ->
Expr_array (List.map pa el)
| Expr_access (e, d) ->
Expr_access (pa e, d)
| Expr_power (e, d) ->
Expr_power (pa e, d)
| Expr_when (e, id, l) ->
Expr_when (pa e, id, l)
| Expr_merge (id, gl) ->
Expr_merge (id, List.map (fun (l, e) -> l, pa e) gl)
in
{ e with expr_desc = edesc }
(* Local Variables: *)
(* compile-command:"make -C .." *)
(* End: *)