Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
corelang.ml 50.53 KiB
(********************************************************************)
(*                                                                  *)
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
(*                                                                  *)
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
(*  under the terms of the GNU Lesser General Public License        *)
(*  version 2.1.                                                    *)
(*                                                                  *)
(********************************************************************)

open Utils
open Format
open Lustre_types
open Machine_code_types
(*open Dimension*)

module VDeclModule = struct
  (* Node module *)
  type t = var_decl

  let compare v1 v2 = compare v1.var_id v2.var_id
end

module VMap = struct
  include Map.Make (VDeclModule)

  let pp ?(comment = "") pp_val fmt m =
    Format.fprintf fmt "@[<hv 0>@[<hv 2>{ %s" comment;
    iter (fun key v -> Format.fprintf fmt "@ %s -> %a" key.var_id pp_val v) m;
    Format.fprintf fmt "@]@ }@]"
end

module VSet : sig
  include Set.S

  val pp : Format.formatter -> t -> unit
  val get : ident -> t -> elt
end
with type elt = var_decl = struct
  include Set.Make (VDeclModule)

  let pp fmt s =
    Format.fprintf fmt "{@[%a}@]" (pp_comma_list Printers.pp_var) (elements s)

  (* Strangley the find_first function of Set.Make is incorrect (at the current
     time of writting this comment. Had to switch to lists *)
  let get id s = List.find (fun v -> v.var_id = id) (elements s)
end

let dummy_type_dec = { ty_dec_desc = Tydec_any; ty_dec_loc = Location.dummy }
let dummy_clock_dec = { ck_dec_desc = Ckdec_any; ck_dec_loc = Location.dummy }

(************************************************************)
(* *)

let fv_expr e =
  let open ISet in
  let rec fv s e =
    match e.expr_desc with
    | Expr_ident x ->
      add x s
    | Expr_tuple es | Expr_array es ->
      List.fold_left fv s es
    | Expr_ite (e1, e2, e3) ->
      fv (fv (fv s e1) e2) e3
    | Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
      fv (fv s e1) e2
    | Expr_access (e1, d) | Expr_power (e1, d) ->
      union (fv s e1) (Dimension.fv d)
    | Expr_pre e ->
      fv s e
    | Expr_when (e, x, _) ->
      fv (add x s) e
    | Expr_merge (x, br) ->
      List.fold_left (fun s (_, e) -> fv s e) (add x s) br
    | Expr_appl (x, e, r) ->
      fv (add x (Option.fold ~none:s ~some:(fv s) r)) e
    | Expr_const _ ->
      s
  in
  fv ISet.empty e

let mktyp loc d = { ty_dec_desc = d; ty_dec_loc = loc }
let mkclock loc d = { ck_dec_desc = d; ck_dec_loc = loc }

let mkvar_decl loc ?(var_is_contract = false) ?(orig = false)
    (id, ty_dec, ck_dec, is_const, value, parentid) =
  assert (value = None || is_const);
  {
    var_id = id;
    var_orig = orig;
    var_dec_type = ty_dec;
    var_dec_clock = ck_dec;
    var_dec_const = is_const;
    var_dec_value = value;
    var_parent_nodeid = parentid;
    var_type = Types.new_var ();
    var_clock = Clocks.new_var true;
    var_loc = loc;
    var_is_contract;
  }

let dummy_var_decl name typ =
  {
    var_id = name;
    var_orig = false;
    var_dec_type = dummy_type_dec;
    var_dec_clock = dummy_clock_dec;
    var_dec_const = false;
    var_dec_value = None;
    var_parent_nodeid = None;
    var_type = typ;
    var_clock = Clocks.new_ck Clocks.Cvar true;
    var_loc = Location.dummy;
    var_is_contract = false;
  }

let mkexpr loc d =
  {
    expr_tag = Utils.new_tag ();
    expr_desc = d;
    expr_type = Types.new_var ();
    expr_clock = Clocks.new_var true;
    expr_delay = Delay.new_var ();
    expr_annot = None;
    expr_loc = loc;
  }

let var_decl_of_const ?(parentid = None) c =
  {
    var_id = c.const_id;
    var_orig = true;
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
    var_dec_const = true;
    var_dec_value = None;
    var_parent_nodeid = parentid;
    var_type = c.const_type;
    var_clock = Clocks.new_var false;
    var_loc = c.const_loc;
    var_is_contract = false;
  }

let mk_new_name used id =
  let rec new_name name cpt =
    if used name then new_name (sprintf "_%s_%i" id cpt) (cpt + 1) else name
  in
  new_name id 1

let mkeq loc (lhs, rhs) = { eq_lhs = lhs; eq_rhs = rhs; eq_loc = loc }
let mkassert loc expr = { assert_loc = loc; assert_expr = expr }

let mktop_decl top_decl_loc top_decl_owner top_decl_itf top_decl_desc =
  { top_decl_desc; top_decl_loc; top_decl_owner; top_decl_itf }

let mkpredef_call loc funname args =
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))

let is_clock_dec_type cty = match cty with Tydec_clock _ -> true | _ -> false

let const_of_top top_decl =
  match top_decl.top_decl_desc with Const c -> c | _ -> assert false

let node_of_top top_decl =
  match top_decl.top_decl_desc with Node nd -> nd | _ -> raise Not_found

let imported_node_of_top top_decl =
  match top_decl.top_decl_desc with
  | ImportedNode ind ->
    ind
  | _ ->
    assert false

let typedef_of_top top_decl =
  match top_decl.top_decl_desc with TypeDef tdef -> tdef | _ -> assert false

let dependency_of_top top_decl =
  match top_decl.top_decl_desc with
  | Open (local, dep) ->
    local, dep
  | _ ->
    assert false

let consts_of_enum_type top_decl =
  match top_decl.top_decl_desc with
  | TypeDef tdef -> (
    match tdef.tydef_desc with
    | Tydec_enum tags ->
      List.map
        (fun tag ->
          let cdecl =
            {
              const_id = tag;
              const_loc = top_decl.top_decl_loc;
              const_value = Const_tag tag;
              const_type = Type_predef.type_const tdef.tydef_id;
            }
          in
          { top_decl with top_decl_desc = Const cdecl })
        tags
    | _ ->
      [])
  | _ ->
    assert false

(************************************************************)
(*   Eexpr functions *)
(************************************************************)
let empty_contract =
  {
    consts = [];
    locals = [];
    stmts = [];
    assume = [];
    guarantees = [];
    modes = [];
    imports = [];
    spec_loc = Location.dummy;
    proof = None;
  }

(* For const declaration we do as for regular lustre node. But for local flows
   we registered the variable and the lustre flow definition *)
let mk_contract_var id is_const type_opt expr loc =
  let typ = match type_opt with None -> mktyp loc Tydec_any | Some t -> t in
  if is_const then
    let v =
      mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, Some expr, None)
    in
    { empty_contract with consts = [ v ]; spec_loc = loc }
  else
    let v =
      mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, None, None)
    in
    let eq = mkeq loc ([ id ], expr) in
    { empty_contract with locals = [ v ]; stmts = [ Eq eq ]; spec_loc = loc }

let eexpr_add_name eexpr eexpr_name = { eexpr with eexpr_name }

let mk_contract_guarantees name eexpr proof =
  {
    empty_contract with
    guarantees = [ eexpr_add_name eexpr name ];
    spec_loc = eexpr.eexpr_loc;
    proof;
  }

let mk_contract_assume name eexpr =
  {
    empty_contract with
    assume = [ eexpr_add_name eexpr name ];
    spec_loc = eexpr.eexpr_loc;
  }

let mk_contract_mode id rl el loc =
  {
    empty_contract with
    modes = [ { mode_id = id; require = rl; ensure = el; mode_loc = loc } ];
    spec_loc = loc;
  }

let mk_contract_import id ins outs loc =
  {
    empty_contract with
    imports =
      [ { import_nodeid = id; inputs = ins; outputs = outs; import_loc = loc } ];
    spec_loc = loc;
  }

let merge_proofs p1 p2 =
  let merge_proofs p1 p2 =
    match p1, p2 with Kinduction k1, Kinduction k2 -> Kinduction (max k1 k2)
  in
  match p1, p2 with
  | Some p1, Some p2 ->
    Some (merge_proofs p1 p2)
  | Some p, None | None, Some p ->
    Some p
  | None, None ->
    None

let merge_contracts ann1 ann2 =
  (* keeping the first item loc *)
  {
    consts = ann1.consts @ ann2.consts;
    locals = ann1.locals @ ann2.locals;
    stmts = ann1.stmts @ ann2.stmts;
    assume = ann1.assume @ ann2.assume;
    guarantees = ann1.guarantees @ ann2.guarantees;
    modes = ann1.modes @ ann2.modes;
    imports = ann1.imports @ ann2.imports;
    spec_loc = ann1.spec_loc;
    proof = merge_proofs ann1.proof ann2.proof;
  }

let mkeexpr loc expr =
  {
    eexpr_tag = Utils.new_tag ();
    eexpr_qfexpr = expr;
    eexpr_quantifiers = [];
    eexpr_name = None;
    eexpr_type = Types.new_var ();
    eexpr_clock = Clocks.new_var true;
    eexpr_loc = loc;
  }

let extend_eexpr q e = { e with eexpr_quantifiers = q @ e.eexpr_quantifiers }

(* let mkepredef_call loc funname args = mkeexpr loc (EExpr_appl (funname,
   mkeexpr loc (EExpr_tuple args), None))

   let mkepredef_unary_call loc funname arg = mkeexpr loc (EExpr_appl (funname,
   arg, None)) *)

let merge_expr_annot ann1 ann2 =
  match ann1, ann2 with
  | None, None ->
    assert false
  | Some _, None ->
    ann1
  | None, Some _ ->
    ann2
  | Some ann1, Some ann2 ->
    Some { annots = ann1.annots @ ann2.annots; annot_loc = ann1.annot_loc }

let update_expr_annot node_id e annot =
  List.iter
    (fun (key, _) -> Annotations.add_expr_ann node_id e.expr_tag key)
    annot.annots;
  e.expr_annot <- merge_expr_annot e.expr_annot (Some annot);
  e

let mkinstr ?lustre_eq ?(instr_spec = []) instr_desc =
  { instr_desc; (* lustre_expr = lustre_expr; *)
                instr_spec; lustre_eq }

let get_instr_desc i = i.instr_desc
let update_instr_desc i id = { i with instr_desc = id }

(***********************************************************)
(* Fast access to nodes, by name *)
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
let consts_table = Hashtbl.create 30

let pp_node_table fmt () =
  Format.fprintf fmt "{ /* node table */@.";
  Hashtbl.iter
    (fun id nd -> Format.fprintf fmt "%s |-> %a" id Printers.pp_short_decl nd)
    node_table;
  Format.fprintf fmt "}@."

let pp_consts_table fmt () =
  Format.fprintf fmt "{ /* consts table */@.";
  Hashtbl.iter
    (fun id const ->
      Format.fprintf
        fmt
        "%s |-> %a"
        id
        Printers.pp_const_decl
        (const_of_top const))
    consts_table;
  Format.fprintf fmt "}@."

let node_name td =
  match td.top_decl_desc with
  | Node nd ->
    nd.node_id
  | ImportedNode nd ->
    nd.nodei_id
  | _ ->
    assert false

let is_generic_node td =
  match td.top_decl_desc with
  | Node nd ->
    List.exists (fun v -> v.var_dec_const) nd.node_inputs
  | ImportedNode nd ->
    List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
  | _ ->
    assert false

let node_inputs td =
  match td.top_decl_desc with
  | Node nd ->
    nd.node_inputs
  | ImportedNode nd ->
    nd.nodei_inputs
  | _ ->
    assert false

let node_from_name id = Hashtbl.find node_table id
let update_node id top = Hashtbl.replace node_table id top

let is_imported_node td =
  match td.top_decl_desc with
  | Node _ ->
    false
  | ImportedNode _ ->
    true
  | _ ->
    assert false

let is_node_contract nd =
  match nd.node_spec with Some (Contract _) -> true | _ -> false

let get_node_contract nd =
  match nd.node_spec with Some (Contract c) -> c | _ -> assert false

let is_contract td =
  match td.top_decl_desc with Node nd -> is_node_contract nd | _ -> false

(* alias and type definition table *)

let mktop = mktop_decl Location.dummy !Options.dest_dir false
let top_int_type = mktop (TypeDef { tydef_id = "int"; tydef_desc = Tydec_int })

let top_bool_type =
  mktop (TypeDef { tydef_id = "bool"; tydef_desc = Tydec_bool })

(* let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc =
   Tydec_float}) *)
let top_real_type =
  mktop (TypeDef { tydef_id = "real"; tydef_desc = Tydec_real })

let type_table =
  Utils.create_hashtable
    20
    [
      Tydec_int, top_int_type;
      Tydec_bool, top_bool_type;
      (* Tydec_float, top_float_type; *)
      Tydec_real, top_real_type;
    ]

let pp_type_table fmt () =
  Format.fprintf fmt "{ /* type table */@.";
  Hashtbl.iter
    (fun tydec tdef ->
      Format.fprintf
        fmt
        "%a |-> %a"
        Printers.pp_var_type_dec_desc
        tydec
        Printers.pp_typedef
        (typedef_of_top tdef))
    type_table;
  Format.fprintf fmt "}@."

let rec is_user_type typ =
  match typ with
  | Tydec_int
  | Tydec_bool
  | Tydec_real (* | Tydec_float *)
  | Tydec_any
  | Tydec_const _ ->
    false
  | Tydec_clock typ' ->
    is_user_type typ'
  | _ ->
    true

let get_repr_type typ =
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
  if is_user_type typ_def then typ else typ_def

let rec coretype_equal ty1 ty2 =
  let res =
    match ty1, ty2 with
    | Tydec_any, _ | _, Tydec_any ->
      assert false
    | Tydec_const _, Tydec_const _ ->
      get_repr_type ty1 = get_repr_type ty2
    | Tydec_const _, _ ->
      let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc in
      (not (is_user_type ty1')) && coretype_equal ty1' ty2
    | _, Tydec_const _ ->
      coretype_equal ty2 ty1
    | Tydec_int, Tydec_int
    | Tydec_real, Tydec_real
    (* | Tydec_float , Tydec_float *)
    | Tydec_bool, Tydec_bool ->
      true
    | Tydec_clock ty1, Tydec_clock ty2 ->
      coretype_equal ty1 ty2
    | Tydec_array (d1, ty1), Tydec_array (d2, ty2) ->
      Dimension.equal d1 d2 && coretype_equal ty1 ty2
    | Tydec_enum tl1, Tydec_enum tl2 ->
      List.sort compare tl1 = List.sort compare tl2
    | Tydec_struct fl1, Tydec_struct fl2 ->
      List.length fl1 = List.length fl2
      && List.for_all2
           (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
           (List.sort (fun (f1, _) (f2, _) -> compare f1 f2) fl1)
           (List.sort (fun (f1, _) (f2, _) -> compare f1 f2) fl2)
    | _ ->
      false
  in
  (*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc
    ty1 Printers.pp_var_type_dec_desc ty2 res;*)
  res

let tag_default = "default"

let const_is_bool c =
  match c with Const_tag t -> t = tag_true || t = tag_false | _ -> false

(* Computes the negation of a boolean constant *)
let const_negation c =
  assert (const_is_bool c);
  match c with
  | Const_tag t when t = tag_true ->
    Const_tag tag_false
  | _ ->
    Const_tag tag_true

let const_or c1 c2 =
  assert (const_is_bool c1 && const_is_bool c2);
  match c1, c2 with
  | Const_tag t1, _ when t1 = tag_true ->
    c1
  | _, Const_tag t2 when t2 = tag_true ->
    c2
  | _ ->
    Const_tag tag_false

let const_and c1 c2 =
  assert (const_is_bool c1 && const_is_bool c2);
  match c1, c2 with
  | Const_tag t1, _ when t1 = tag_false ->
    c1
  | _, Const_tag t2 when t2 = tag_false ->
    c2
  | _ ->
    Const_tag tag_true

let const_xor c1 c2 =
  assert (const_is_bool c1 && const_is_bool c2);
  match c1, c2 with
  | Const_tag t1, Const_tag t2 when t1 <> t2 ->
    Const_tag tag_true
  | _ ->
    Const_tag tag_false

let const_impl c1 c2 =
  assert (const_is_bool c1 && const_is_bool c2);
  match c1, c2 with
  | Const_tag t1, _ when t1 = tag_false ->
    Const_tag tag_true
  | _, Const_tag t2 when t2 = tag_true ->
    Const_tag tag_true
  | _ ->
    Const_tag tag_false

(* To guarantee uniqueness of tags in enum types *)
let tag_table =
  Utils.create_hashtable
    20
    [ tag_true, top_bool_type; tag_false, top_bool_type ]

(* To guarantee uniqueness of fields in struct types *)
let field_table = Utils.create_hashtable 20 []

let get_enum_type_tags cty =
  (*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc
    cty;*)
  match cty with
  | Tydec_bool ->
    [ tag_true; tag_false ]
  | Tydec_const _ -> (
    match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
    | Tydec_enum tl ->
      tl
    | _ ->
      assert false)
  | _ ->
    assert false

let get_struct_type_fields cty =
  match cty with
  | Tydec_const _ -> (
    match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
    | Tydec_struct fl ->
      fl
    | _ ->
      assert false)
  | _ ->
    assert false

let const_of_bool b = Const_tag (if b then tag_true else tag_false)

(* let get_const c = snd (Hashtbl.find consts_table c) *)

let ident_of_expr expr =
  match expr.expr_desc with Expr_ident id -> id | _ -> assert false

(* Generate a new ident expression from a declared variable *)
let expr_of_vdecl v =
  {
    expr_tag = Utils.new_tag ();
    expr_desc = Expr_ident v.var_id;
    expr_type = v.var_type;
    expr_clock = v.var_clock;
    expr_delay = Delay.new_var ();
    expr_annot = None;
    expr_loc = v.var_loc;
  }

(* Caution, returns an untyped and unclocked expression *)
let expr_of_ident id loc =
  {
    expr_tag = Utils.new_tag ();
    expr_desc = Expr_ident id;
    expr_type = Types.new_var ();
    expr_clock = Clocks.new_var true;
    expr_delay = Delay.new_var ();
    expr_loc = loc;
    expr_annot = None;
  }

let is_tuple_expr expr =
  match expr.expr_desc with Expr_tuple _ -> true | _ -> false

let expr_list_of_expr expr =
  match expr.expr_desc with Expr_tuple elist -> elist | _ -> [ expr ]

let expr_of_expr_list loc elist =
  match elist with
  | [ t ] ->
    { t with expr_loc = loc }
  | t :: _ ->
    let tlist = List.map (fun e -> e.expr_type) elist in
    let clist = List.map (fun e -> e.expr_clock) elist in
    {
      t with
      expr_desc = Expr_tuple elist;
      expr_type = Type_predef.type_tuple tlist;
      expr_clock = Clock_predef.ck_tuple clist;
      expr_tag = Utils.new_tag ();
      expr_loc = loc;
    }
  | _ ->
    assert false

let call_of_expr expr =
  match expr.expr_desc with
  | Expr_appl (f, args, r) ->
    f, expr_list_of_expr args, r
  | _ ->
    assert false

(* Conversion from dimension expr to standard expr, for the purpose of printing,
   typing, etc... *)
let rec expr_of_dimension dim =
  let open Dimension in
  let expr =
    match dim.dim_desc with
    | Dbool b ->
      mkexpr dim.dim_loc (Expr_const (const_of_bool b))
    | Dint i ->
      mkexpr dim.dim_loc (Expr_const (Const_int i))
    | Dident id ->
      mkexpr dim.dim_loc (Expr_ident id)
    | Dite (c, t, e) ->
      mkexpr
        dim.dim_loc
        (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
    | Dappl (id, args) ->
      mkexpr
        dim.dim_loc
        (Expr_appl
           ( id,
             expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args),
             None ))
    | Dlink dim' ->
      expr_of_dimension dim'
    | Dvar | Dunivar ->
      Format.eprintf
        "internal error: Corelang.expr_of_dimension %a@."
        Dimension.pp
        dim;
      assert false
  in
  { expr with expr_type = Types.new_ty Types.type_int }

let dimension_of_const loc const =
  let open Dimension in
  match const with
  | Const_int i ->
    mkdim_int loc i
  | Const_tag t when t = tag_true || t = tag_false ->
    mkdim_bool loc (t = tag_true)
  | _ ->
    raise InvalidDimension

(* Conversion from standard expr to dimension expr, for the purpose of injecting
   static call arguments into dimension expressions *)
let rec dimension_of_expr expr =
  let open Dimension in
  match expr.expr_desc with
  | Expr_const c ->
    dimension_of_const expr.expr_loc c
  | Expr_ident id ->
    mkdim_ident expr.expr_loc id
  | Expr_appl (f, args, None) when Basic_library.is_expr_internal_fun expr ->
    let k =
      Types.get_static_value (Env.lookup_value Basic_library.type_env f)
    in
    if k = None then raise InvalidDimension;
    mkdim_appl
      expr.expr_loc
      f
      (List.map dimension_of_expr (expr_list_of_expr args))
  | Expr_ite (i, t, e) ->
    mkdim_ite
      expr.expr_loc
      (dimension_of_expr i)
      (dimension_of_expr t)
      (dimension_of_expr e)
  | _ ->
    raise InvalidDimension
(* not a simple dimension expression *)

let sort_handlers hl = List.sort (fun (t, _) (t', _) -> compare t t') hl

let rec is_eq_const c1 c2 =
  match c1, c2 with
  | Const_real r1, Const_real _ ->
    Real.eq r1 r1
  | Const_struct lcl1, Const_struct lcl2 ->
    List.length lcl1 = List.length lcl2
    && List.for_all2
         (fun (l1, c1) (l2, c2) -> l1 = l2 && is_eq_const c1 c2)
         lcl1
         lcl2
  | _ ->
    c1 = c2

let rec is_eq_expr e1 e2 =
  match e1.expr_desc, e2.expr_desc with
  | Expr_const c1, Expr_const c2 ->
    is_eq_const c1 c2
  | Expr_ident i1, Expr_ident i2 ->
    i1 = i2
  | Expr_array el1, Expr_array el2 | Expr_tuple el1, Expr_tuple el2 ->
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') ->
    is_eq_expr e1 e1' && is_eq_expr e2 e2'
  | Expr_fby (e1, e2), Expr_fby (e1', e2') ->
    is_eq_expr e1 e1' && is_eq_expr e2 e2'
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) ->
    is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' &&
     is_eq_expr e2 e2' *)
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
  | Expr_pre e, Expr_pre e' ->
    is_eq_expr e e'
  | Expr_when (e, i, l), Expr_when (e', i', l') ->
    l = l' && i = i' && is_eq_expr e e'
  | Expr_merge (i, hl), Expr_merge (i', hl') ->
    i = i'
    && List.for_all2
         (fun (t, h) (t', h') -> t = t' && is_eq_expr h h')
         (sort_handlers hl)
         (sort_handlers hl')
  | Expr_appl (i, e, r), Expr_appl (i', e', r') ->
    i = i' && r = r' && is_eq_expr e e'
  | Expr_power (e1, i1), Expr_power (e2, i2)
  | Expr_access (e1, i1), Expr_access (e2, i2) ->
    is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
  | _ ->
    false

let get_node_vars nd =
  nd.node_inputs @ List.map fst nd.node_locals @ nd.node_outputs

let mk_new_node_name nd id =
  let used_vars = get_node_vars nd in
  let used v = List.exists (fun vdecl -> vdecl.var_id = v) used_vars in
  mk_new_name used id

let get_var id var_list = List.find (fun v -> v.var_id = id) var_list

let get_node_var id node =
  try get_var id (get_node_vars node)
  with Not_found ->
    (* Format.eprintf "Unable to find variable %s in node %s@.@?" id
       node.node_id; *)
    raise Not_found

let get_eqs stmts =
  List.fold_right
    (fun stmt (res_eq, res_aut) ->
      match stmt with
      | Eq eq ->
        eq :: res_eq, res_aut
      | Aut aut ->
        res_eq, aut :: res_aut)
    stmts
    ([], [])

let get_node_eqs =
  let table_eqs = Hashtbl.create 23 in
  fun nd ->
    try
      let old, res = Hashtbl.find table_eqs nd.node_id in
      if old == nd.node_stmts then res else raise Not_found
    with Not_found ->
      let res = get_eqs nd.node_stmts in
      Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
      res

let get_contract_eqs c = get_eqs c.stmts

let get_node_eq id node =
  let eqs, _ = get_node_eqs node in
  try List.find (fun eq -> List.mem id eq.eq_lhs) eqs
  with Not_found -> (* Shall be defined in automata auts *)
                    raise Not_found

let get_nodes prog =
  List.fold_left
    (fun nodes decl ->
      match decl.top_decl_desc with
      | Node _ ->
        decl :: nodes
      | Const _ | ImportedNode _ | Include _ | Open _ | TypeDef _ ->
        nodes)
    []
    prog
  |> List.rev

let get_imported_nodes prog =
  List.fold_left
    (fun nodes decl ->
      match decl.top_decl_desc with
      | ImportedNode _ ->
        decl :: nodes
      | Const _ | Node _ | Include _ | Open _ | TypeDef _ ->
        nodes)
    []
    prog

let get_consts prog =
  List.fold_right
    (fun decl consts ->
      match decl.top_decl_desc with
      | Const _ ->
        decl :: consts
      | Node _ | ImportedNode _ | Include _ | Open _ | TypeDef _ ->
        consts)
    prog
    []

let get_typedefs prog =
  List.fold_right
    (fun decl types ->
      match decl.top_decl_desc with
      | TypeDef _ ->
        decl :: types
      | Node _ | ImportedNode _ | Include _ | Open _ | Const _ ->
        types)
    prog
    []

let get_dependencies prog =
  List.fold_right
    (fun decl deps ->
      match decl.top_decl_desc with
      | Open _ ->
        decl :: deps
      | Node _ | ImportedNode _ | TypeDef _ | Include _ | Const _ ->
        deps)
    prog
    []

let get_node_interface nd =
  {
    nodei_id = nd.node_id;
    nodei_type = nd.node_type;
    nodei_clock = nd.node_clock;
    nodei_inputs = nd.node_inputs;
    nodei_outputs = nd.node_outputs;
    nodei_stateless = nd.node_dec_stateless;
    nodei_spec = nd.node_spec;
    (* nodei_annot = nd.node_annot; *)
    nodei_prototype = None;
    nodei_in_lib = [];
    nodei_iscontract = nd.node_iscontract;
  }

(************************************************************************)
(* Renaming / Copying *)

let copy_var_decl vdecl =
  mkvar_decl
    vdecl.var_loc
    ~orig:vdecl.var_orig
    ( vdecl.var_id,
      vdecl.var_dec_type,
      vdecl.var_dec_clock,
      vdecl.var_dec_const,
      vdecl.var_dec_value,
      vdecl.var_parent_nodeid )

let copy_const cdecl = { cdecl with const_type = Types.new_var () }

let copy_node nd =
  {
    nd with
    node_type = Types.new_var ();
    node_clock = Clocks.new_var true;
    node_inputs = List.map copy_var_decl nd.node_inputs;
    node_outputs = List.map copy_var_decl nd.node_outputs;
    node_locals = List.map (fun (v, i) -> copy_var_decl v, i) nd.node_locals;
    node_gencalls = [];
    node_checks = [];
    node_stateless = None;
  }

let copy_top top =
  match top.top_decl_desc with
  | Node nd ->
    { top with top_decl_desc = Node (copy_node nd) }
  | Const c ->
    { top with top_decl_desc = Const (copy_const c) }
  | _ ->
    top

let copy_prog top_list = List.map copy_top top_list

let rec rename_static rename cty =
  match cty with
  | Tydec_array (d, cty') ->
    Tydec_array (Dimension.expr_replace_expr rename d, rename_static rename cty')
  | Tydec_clock cty ->
    Tydec_clock (rename_static rename cty)
  | Tydec_struct fl ->
    Tydec_struct (List.map (fun (f, cty) -> f, rename_static rename cty) fl)
  | _ ->
    cty

let rename_carrier rename cck =
  match cck with
  | Ckdec_bool cl ->
    Ckdec_bool (List.map (fun (c, l) -> rename c, l) cl)
  | _ ->
    cck

(*Format.eprintf "Types.rename_static %a = %a@." pp ty pp res; res*)

(* applies the renaming function [fvar] to all variables of expression [expr] *)
(* let rec expr_replace_var fvar expr = *)
(*  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc } *)

(* and expr_desc_replace_var fvar expr_desc = *)
(*   match expr_desc with *)
(*   | Expr_const _ -> expr_desc *)
(*   | Expr_ident i -> Expr_ident (fvar i) *)
(*   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el) *)
(*   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d) *)
(*   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d) *)
(*   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el) *)
(* | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var
   fvar t, expr_replace_var fvar e) *)
(* | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1,
   expr_replace_var fvar e2) *)
(* | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var
   fvar e2) *)
(*   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e') *)
(*   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l) *)
(* | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t,
   expr_replace_var fvar h)) hl) *)
(* | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e',
   Utils.option_map (expr_replace_var fvar) i') *)

let rec rename_expr f_node f_var expr =
  { expr with expr_desc = rename_expr_desc f_node f_var expr.expr_desc }

and rename_expr_desc f_node f_var expr_desc =
  let re = rename_expr f_node f_var in
  match expr_desc with
  | Expr_const _ ->
    expr_desc
  | Expr_ident i ->
    Expr_ident (f_var i)
  | Expr_array el ->
    Expr_array (List.map re el)
  | Expr_access (e1, d) ->
    Expr_access (re e1, d)
  | Expr_power (e1, d) ->
    Expr_power (re e1, d)
  | Expr_tuple el ->
    Expr_tuple (List.map re el)
  | Expr_ite (c, t, e) ->
    Expr_ite (re c, re t, re e)
  | Expr_arrow (e1, e2) ->
    Expr_arrow (re e1, re e2)
  | Expr_fby (e1, e2) ->
    Expr_fby (re e1, re e2)
  | Expr_pre e' ->
    Expr_pre (re e')
  | Expr_when (e', i, l) ->
    Expr_when (re e', f_var i, l)
  | Expr_merge (i, hl) ->
    Expr_merge (f_var i, List.map (fun (t, h) -> t, re h) hl)
  | Expr_appl (i, e', i') ->
    Expr_appl (f_node i, re e', Utils.option_map re i')

let rename_var f_var v =
  {
    (copy_var_decl v) with
    var_id = f_var v.var_id;
    var_type = v.var_type;
    var_clock = v.var_clock;
  }

let rename_vars f_var = List.map (rename_var f_var)

let rec rename_eq f_node f_var eq =
  {
    eq with
    eq_lhs = List.map f_var eq.eq_lhs;
    eq_rhs = rename_expr f_node f_var eq.eq_rhs;
  }

and rename_handler f_node f_var h =
  {
    h with
    hand_state = f_var h.hand_state;
    hand_unless =
      List.map
        (fun (l, e, b, id) -> l, rename_expr f_node f_var e, b, f_var id)
        h.hand_unless;
    hand_until =
      List.map
        (fun (l, e, b, id) -> l, rename_expr f_node f_var e, b, f_var id)
        h.hand_until;
    hand_locals = rename_vars f_var h.hand_locals;
    hand_stmts = rename_stmts f_node f_var h.hand_stmts;
    hand_annots = rename_annots f_node f_var h.hand_annots;
  }

and rename_aut f_node f_var aut =
  {
    aut with
    aut_id = f_var aut.aut_id;
    aut_handlers = List.map (rename_handler f_node f_var) aut.aut_handlers;
  }

and rename_stmts f_node f_var stmts =
  List.map
    (fun stmt ->
      match stmt with
      | Eq eq ->
        Eq (rename_eq f_node f_var eq)
      | Aut at ->
        Aut (rename_aut f_node f_var at))
    stmts

and rename_annotl f_node f_var annots =
  List.map (fun (key, value) -> key, rename_eexpr f_node f_var value) annots

and rename_annot f_node f_var annot =
  { annot with annots = rename_annotl f_node f_var annot.annots }

and rename_annots f_node f_var annots =
  List.map (rename_annot f_node f_var) annots

and rename_eexpr f_node f_var ee =
  {
    ee with
    eexpr_tag = Utils.new_tag ();
    eexpr_qfexpr = rename_expr f_node f_var ee.eexpr_qfexpr;
    eexpr_quantifiers =
      List.map
        (fun (typ, vdecls) -> typ, rename_vars f_var vdecls)
        ee.eexpr_quantifiers;
  }

and rename_mode f_node f_var m =
  let rename_ee = rename_eexpr f_node f_var in
  {
    m with
    require = List.map rename_ee m.require;
    ensure = List.map rename_ee m.ensure;
  }

let rename_import f_node f_var imp =
  let rename_expr = rename_expr f_node f_var in
  {
    imp with
    import_nodeid = f_node imp.import_nodeid;
    inputs = rename_expr imp.inputs;
    outputs = rename_expr imp.outputs;
  }

let rename_contract f_var f_node c =
  let rename_var = rename_var f_var in
  let rename_vars = List.map rename_var in
  let rename_eexpr = rename_eexpr f_node f_var in
  let rename_stmts = rename_stmts f_node f_var in
  {
    c with
    consts = rename_vars c.consts;
    locals = rename_vars c.locals;
    stmts = rename_stmts c.stmts;
    assume = List.map rename_eexpr c.assume;
    guarantees = List.map rename_eexpr c.guarantees;
    modes = List.map (rename_mode f_node f_var) c.modes;
    imports = List.map (rename_import f_node f_var) c.imports;
  }

let rename_node f_node f_var nd =
  let f_var x =
    (* checking that this is actually a local variable *)
    if List.exists (fun v -> v.var_id = x) (get_node_vars nd) then f_var x
    else x
  in
  let rename_var = rename_var f_var in
  let rename_vars = List.map rename_var in
  let rename_expr = rename_expr f_node f_var in
  let rename_stmts = rename_stmts f_node f_var in
  let inputs = rename_vars nd.node_inputs in
  let outputs = rename_vars nd.node_outputs in
  let locals =
    List.map (fun (v, i) -> rename_var v, Option.map f_var i) nd.node_locals
  in
  let gen_calls = List.map rename_expr nd.node_gencalls in
  let node_checks = List.map (Dimension.rename f_node f_var) nd.node_checks in
  let node_asserts =
    List.map
      (fun a ->
        {
          a with
          assert_expr =
            (let expr = a.assert_expr in
             rename_expr expr);
        })
      nd.node_asserts
  in
  let node_stmts = rename_stmts nd.node_stmts in

  let spec =
    option_map
      (fun s ->
        match s with
        | NodeSpec id ->
          NodeSpec (f_node id)
        | Contract c ->
          Contract (rename_contract f_var f_node c))
      nd.node_spec
  in
  let annot = rename_annots f_node f_var nd.node_annot in
  {
    node_id = f_node nd.node_id;
    node_type = nd.node_type;
    node_clock = nd.node_clock;
    node_inputs = inputs;
    node_outputs = outputs;
    node_locals = locals;
    node_gencalls = gen_calls;
    node_checks;
    node_asserts;
    node_stmts;
    node_dec_stateless = nd.node_dec_stateless;
    node_stateless = nd.node_stateless;
    node_spec = spec;
    node_annot = annot;
    node_iscontract = nd.node_iscontract;
  }

let rename_const f_const c = { c with const_id = f_const c.const_id }

let rename_typedef f_var t =
  match t.tydef_desc with
  | Tydec_enum tags ->
    { t with tydef_desc = Tydec_enum (List.map f_var tags) }
  | _ ->
    t

let rename_prog f_node f_var f_const prog =
  List.rev
    (List.fold_left
       (fun accu top ->
         (match top.top_decl_desc with
         | Node nd ->
           { top with top_decl_desc = Node (rename_node f_node f_var nd) }
         | Const c ->
           { top with top_decl_desc = Const (rename_const f_const c) }
         | TypeDef tdef ->
           { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
         | ImportedNode _ | Include _ | Open _ ->
           top)
         :: accu)
       []
       prog)

(* Applies the renaming function [fvar] to every rhs only when the corresponding
   lhs satisfies predicate [pvar] *)
let eq_replace_rhs_var pvar fvar eq =
  let pvar l = List.exists pvar l in
  let rec replace lhs rhs =
    {
      rhs with
      expr_desc =
        (match lhs with
        | [] ->
          assert false
        | [ _ ] ->
          if pvar lhs then rename_expr_desc (fun x -> x) fvar rhs.expr_desc
          else rhs.expr_desc
        | _ -> (
          match rhs.expr_desc with
          | Expr_tuple tl ->
            Expr_tuple (List.map2 (fun v e -> replace [ v ] e) lhs tl)
          | Expr_appl (f, arg, None) when Basic_library.is_expr_internal_fun rhs
            ->
            let args = expr_list_of_expr arg in
            Expr_appl
              ( f,
                expr_of_expr_list arg.expr_loc (List.map (replace lhs) args),
                None )
          | Expr_array _
          | Expr_access _
          | Expr_power _
          | Expr_const _
          | Expr_ident _
          | Expr_appl _ ->
            if pvar lhs then rename_expr_desc (fun x -> x) fvar rhs.expr_desc
            else rhs.expr_desc
          | Expr_ite (c, t, e) ->
            Expr_ite (replace lhs c, replace lhs t, replace lhs e)
          | Expr_arrow (e1, e2) ->
            Expr_arrow (replace lhs e1, replace lhs e2)
          | Expr_fby (e1, e2) ->
            Expr_fby (replace lhs e1, replace lhs e2)
          | Expr_pre e' ->
            Expr_pre (replace lhs e')
          | Expr_when (e', i, l) ->
            let i' = if pvar lhs then fvar i else i in
            Expr_when (replace lhs e', i', l)
          | Expr_merge (i, hl) ->
            let i' = if pvar lhs then fvar i else i in
            Expr_merge (i', List.map (fun (t, h) -> t, replace lhs h) hl)));
    }
  in
  { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }

(**********************************************************************)
(* Pretty printers *)

let pp_decl_type fmt tdecl =
  match tdecl.top_decl_desc with
  | Node nd ->
    fprintf fmt "%s: " nd.node_id;
    Utils.reset_names ();
    fprintf fmt "%a" Types.pp nd.node_type
  | ImportedNode ind ->
    fprintf fmt "%s: " ind.nodei_id;
    Utils.reset_names ();
    fprintf fmt "%a" Types.pp ind.nodei_type
  | Const _ | Include _ | Open _ | TypeDef _ ->
    ()

let pp_prog_type fmt tdecl_list =
  Utils.Format.(
    pp_print_list ~pp_open_box:pp_open_vbox0 pp_decl_type fmt tdecl_list)

let pp_decl_clock fmt cdecl =
  match cdecl.top_decl_desc with
  | Node nd ->
    fprintf fmt "%s: " nd.node_id;
    Utils.reset_names ();
    fprintf fmt "%a@ " Clocks.pp nd.node_clock
  | ImportedNode ind ->
    fprintf fmt "%s: " ind.nodei_id;
    Utils.reset_names ();
    fprintf fmt "%a@ " Clocks.pp ind.nodei_clock
  | Const _ | Include _ | Open _ | TypeDef _ ->
    ()

let pp_prog_clock fmt prog =
  pp_print_list ~pp_sep:pp_print_nothing pp_decl_clock fmt prog

(* filling node table with internal functions *)
let vdecls_of_typ_ck cpt ty =
  let loc = Location.dummy in
  List.map
    (fun _ ->
      incr cpt;
      let name = sprintf "_var_%d" !cpt in
      mkvar_decl
        loc
        (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false, None, None))
    (Types.type_list_of_type ty)

let mk_internal_node id =
  let spec = None in
  let ty = Env.lookup_value Basic_library.type_env id in
  let ck = Env.lookup_value Basic_library.clock_env id in
  let tin, tout = Types.split_arrow ty in
  (*eprintf "internal fun %s: %d -> %d@." id (List.length
    (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type
    tout));*)
  let cpt = ref (-1) in
  mktop
    (ImportedNode
       {
         nodei_id = id;
         nodei_type = ty;
         nodei_clock = ck;
         nodei_inputs = vdecls_of_typ_ck cpt tin;
         nodei_outputs = vdecls_of_typ_ck cpt tout;
         nodei_stateless = Types.get_static_value ty <> None;
         nodei_spec = spec;
         (* nodei_annot = []; *)
         nodei_prototype = None;
         nodei_in_lib = [];
         nodei_iscontract = false;
       })

let add_internal_funs () =
  List.iter
    (fun id ->
      let nd = mk_internal_node id in
      Hashtbl.add node_table id nd)
    Basic_library.internal_funs

(* Replace any occurence of a var in vars_to_replace by its associated
   expression in defs until e does not contain any such variables *)
let rec substitute_expr vars_to_replace defs e =
  let se = substitute_expr vars_to_replace defs in
  {
    e with
    expr_desc =
      (let ed = e.expr_desc in
       match ed with
       | Expr_const _ ->
         ed
       | Expr_array el ->
         Expr_array (List.map se el)
       | Expr_access (e1, d) ->
         Expr_access (se e1, d)
       | Expr_power (e1, d) ->
         Expr_power (se e1, d)
       | Expr_tuple el ->
         Expr_tuple (List.map se el)
       | Expr_ite (c, t, e) ->
         Expr_ite (se c, se t, se e)
       | Expr_arrow (e1, e2) ->
         Expr_arrow (se e1, se e2)
       | Expr_fby (e1, e2) ->
         Expr_fby (se e1, se e2)
       | Expr_pre e' ->
         Expr_pre (se e')
       | Expr_when (e', i, l) ->
         Expr_when (se e', i, l)
       | Expr_merge (i, hl) ->
         Expr_merge (i, List.map (fun (t, h) -> t, se h) hl)
       | Expr_appl (i, e', i') ->
         Expr_appl (i, se e', option_map se i')
       | Expr_ident i ->
         if List.exists (fun v -> v.var_id = i) vars_to_replace then
           let eq_i eq = eq.eq_lhs = [ i ] in
           if List.exists eq_i defs then
             let sub = List.find eq_i defs in
             let sub' = se sub.eq_rhs in
             sub'.expr_desc
           else assert false
         else ed);
  }

let expr_to_eexpr expr =
  {
    eexpr_tag = expr.expr_tag;
    eexpr_qfexpr = expr;
    eexpr_quantifiers = [];
    eexpr_name = None;
    eexpr_type = expr.expr_type;
    eexpr_clock = expr.expr_clock;
    eexpr_loc = expr.expr_loc (*eexpr_normalized = None*);
  }

(* and expr_desc_to_eexpr_desc expr_desc = *)
(*   let conv = expr_to_eexpr in *)
(*   match expr_desc with *)
(*   | Expr_const c -> EExpr_const (match c with *)
(*     | Const_int x -> EConst_int x  *)
(*     | Const_real x -> EConst_real x  *)
(*     | Const_float x -> EConst_float x  *)
(*     | Const_tag x -> EConst_tag x  *)
(*     | _ -> assert false *)

(*   ) *)
(*   | Expr_ident i -> EExpr_ident i *)
(*   | Expr_tuple el -> EExpr_tuple (List.map conv el) *)
(*   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2)  *)
(*   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2) *)
(*   | Expr_pre e' -> EExpr_pre (conv e') *)
(*   | Expr_appl (i, e', i') ->  *)
(*     EExpr_appl  *)
(*       (i, conv e', match i' with None -> None | Some(id, _) -> Some id) *)

(*   | Expr_when _ *)
(*   | Expr_merge _ -> assert false *)
(*   | Expr_array _  *)
(*   | Expr_access _  *)
(*   | Expr_power _  -> assert false *)
(*   | Expr_ite (c, t, e) -> assert false  *)
(*   | _ -> assert false *)

let rec get_expr_calls nodes e =
  let get_calls = get_expr_calls nodes in
  match e.expr_desc with
  | Expr_const _ | Expr_ident _ ->
    Utils.ISet.empty
  | Expr_tuple el | Expr_array el ->
    List.fold_left
      (fun accu e -> Utils.ISet.union accu (get_calls e))
      Utils.ISet.empty
      el
  | Expr_pre e1 | Expr_when (e1, _, _) | Expr_access (e1, _) | Expr_power (e1, _)
    ->
    get_calls e1
  | Expr_ite (c, t, e) ->
    Utils.ISet.union
      (Utils.ISet.union (get_calls c) (get_calls t))
      (get_calls e)
  | Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
    Utils.ISet.union (get_calls e1) (get_calls e2)
  | Expr_merge (_, hl) ->
    List.fold_left
      (fun accu (_, h) -> Utils.ISet.union accu (get_calls h))
      Utils.ISet.empty
      hl
  | Expr_appl (i, e', _) ->
    if Basic_library.is_expr_internal_fun e then get_calls e'
    else
      let calls = Utils.ISet.add i (get_calls e') in
      let test n =
        match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false
      in
      if List.exists test nodes then
        match (List.find test nodes).top_decl_desc with
        | Node nd ->
          Utils.ISet.union (get_node_calls nodes nd) calls
        | _ ->
          assert false
      else calls

and get_eq_calls nodes eq = get_expr_calls nodes eq.eq_rhs

and get_aut_handler_calls nodes h =
  List.fold_left
    (fun accu stmt ->
      match stmt with
      | Eq eq ->
        Utils.ISet.union (get_eq_calls nodes eq) accu
      | Aut aut' ->
        Utils.ISet.union (get_aut_calls nodes aut') accu)
    Utils.ISet.empty
    h.hand_stmts

and get_aut_calls nodes aut =
  List.fold_left
    (fun accu h -> Utils.ISet.union (get_aut_handler_calls nodes h) accu)
    Utils.ISet.empty
    aut.aut_handlers

and get_node_calls nodes node =
  let eqs, auts = get_node_eqs node in
  let aut_calls =
    List.fold_left
      (fun accu aut -> Utils.ISet.union (get_aut_calls nodes aut) accu)
      Utils.ISet.empty
      auts
  in
  List.fold_left
    (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu)
    aut_calls
    eqs

let get_expr_vars e =
  let rec get_expr_vars vars e = get_expr_desc_vars vars e.expr_desc
  and get_expr_desc_vars vars expr_desc =
    (*Format.eprintf "get_expr_desc_vars expr=%a@." Printers.pp_expr (mkexpr
      Location.dummy expr_desc);*)
    match expr_desc with
    | Expr_const _ ->
      vars
    | Expr_ident x ->
      Utils.ISet.add x vars
    | Expr_tuple el | Expr_array el ->
      List.fold_left get_expr_vars vars el
    | Expr_pre e1 ->
      get_expr_vars vars e1
    | Expr_when (e1, c, _) ->
      get_expr_vars (Utils.ISet.add c vars) e1
    | Expr_access (e1, d) | Expr_power (e1, d) ->
      List.fold_left get_expr_vars vars [ e1; expr_of_dimension d ]
    | Expr_ite (c, t, e) ->
      List.fold_left get_expr_vars vars [ c; t; e ]
    | Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
      List.fold_left get_expr_vars vars [ e1; e2 ]
    | Expr_merge (c, hl) ->
      List.fold_left
        (fun vars (_, h) -> get_expr_vars vars h)
        (Utils.ISet.add c vars)
        hl
    | Expr_appl (_, arg, None) ->
      get_expr_vars vars arg
    | Expr_appl (_, arg, Some r) ->
      List.fold_left get_expr_vars vars [ arg; r ]
  in
  get_expr_vars Utils.ISet.empty e

(* let rec expr_has_arrows e =
 *   expr_desc_has_arrows e.expr_desc
 * and expr_desc_has_arrows expr_desc =
 *   match expr_desc with
 *   | Expr_const _
 *   | Expr_ident _ -> false
 *   | Expr_tuple el
 *   | Expr_array el -> List.exists expr_has_arrows el
 *   | Expr_pre e1
 *   | Expr_when (e1, _, _)
 *   | Expr_access (e1, _)
 *   | Expr_power (e1, _) -> expr_has_arrows e1
 *   | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
 *   | Expr_arrow _
 *   | Expr_fby _ -> true
 *   | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
 *   | Expr_appl (_, e', _) -> expr_has_arrows e'
 *
 * and eq_has_arrows eq =
 *   expr_has_arrows eq.eq_rhs
 * and aut_has_arrows aut = List.exists (fun h -> List.exists (fun stmt -> match stmt with Eq eq -> eq_has_arrows eq | Aut aut' -> aut_has_arrows aut') h.hand_stmts ) aut.aut_handlers
 * and node_has_arrows node =
 *   let eqs, auts = get_node_eqs node in
 *   List.exists (fun eq -> eq_has_arrows eq) eqs || List.exists (fun aut -> aut_has_arrows aut) auts *)

let rec expr_contains_expr expr_tag expr =
  let search = expr_contains_expr expr_tag in
  expr.expr_tag = expr_tag
  ||
  match expr.expr_desc with
  | Expr_const _ ->
    false
  | Expr_array el ->
    List.exists search el
  | Expr_access (e1, _) | Expr_power (e1, _) ->
    search e1
  | Expr_tuple el ->
    List.exists search el
  | Expr_ite (c, t, e) ->
    List.exists search [ c; t; e ]
  | Expr_arrow (e1, e2) | Expr_fby (e1, e2) ->
    List.exists search [ e1; e2 ]
  | Expr_pre e' | Expr_when (e', _, _) ->
    search e'
  | Expr_merge (_, hl) ->
    List.exists (fun (_, h) -> search h) hl
  | Expr_appl (_, e', None) ->
    search e'
  | Expr_appl (_, e', Some e'') ->
    List.exists search [ e'; e'' ]
  | Expr_ident _ ->
    false

(* Generate a new local [node] variable *)
let cpt_fresh = ref 0
let reset_cpt_fresh () = cpt_fresh := 0

let mk_fresh_var (parentid, ctx_env) loc ty ck =
  let rec aux () =
    incr cpt_fresh;
    let s = Printf.sprintf "__%s_%d" parentid !cpt_fresh in
    if List.exists (fun v -> v.var_id = s) ctx_env then aux ()
    else
      {
        var_id = s;
        var_orig = false;
        var_dec_type = dummy_type_dec;
        var_dec_clock = dummy_clock_dec;
        var_dec_const = false;
        var_dec_value = None;
        var_parent_nodeid = Some parentid;
        var_type = ty;
        var_clock = ck;
        var_loc = loc;
        var_is_contract = false;
      }
  in
  aux ()

let find_eq xl eqs =
  let rec aux accu eqs =
    match eqs with
    | [] ->
      Format.eprintf
        "Looking for variables %a in the following equations@.%a@."
        (pp_comma_list (fun fmt v -> Format.fprintf fmt "%s" v))
        xl
        Printers.pp_node_eqs
        eqs;
      assert false
    | hd :: tl ->
      if List.exists (fun x -> List.mem x hd.eq_lhs) xl then hd, accu @ tl
      else aux (hd :: accu) tl
  in
  aux [] eqs

let get_node name prog =
  let node_opt =
    List.fold_left
      (fun res top ->
        match res, top.top_decl_desc with
        | Some _, _ ->
          res
        | None, Node nd ->
          (* Format.eprintf "Checking node %s = %s: %b@." nd.node_id name
             (nd.node_id = name); *)
          if nd.node_id = name then Some nd else res
        | _ ->
          None)
      None
      prog
  in
  try Utils.desome node_opt with Utils.DeSome -> raise Not_found

(* Pushing negations in expression. Subtitute operators whenever possible *)
let rec push_negations ?(neg = false) e =
  let res =
    let pn = push_negations in
    let map desc =
      (* Keeping clock and type info *)
      let new_e = mkexpr e.expr_loc desc in
      { new_e with expr_type = e.expr_type; expr_clock = e.expr_clock }
    in
    match e.expr_desc with
    | Expr_ite (g, t, e) ->
      if neg then map (Expr_ite (pn g, pn e, pn t))
      else map (Expr_ite (pn g, pn t, pn e))
    | Expr_tuple t ->
      map (Expr_tuple (List.map (pn ~neg) t))
    | Expr_arrow (e1, e2) ->
      map (Expr_arrow (pn ~neg e1, pn ~neg e2))
    | Expr_fby (e1, e2) ->
      map (Expr_fby (pn ~neg e1, pn ~neg e2))
    | Expr_pre e ->
      map (Expr_pre (pn ~neg e))
    | Expr_appl (op, e', None) when op = "not" ->
      if neg then push_negations ~neg:false e' else push_negations ~neg:true e'
    | Expr_appl (op, e', None)
      when List.mem op (Basic_library.bool_funs @ Basic_library.rel_funs) -> (
      match op with
      | "&&" ->
        map (Expr_appl ((if neg then "||" else op), pn ~neg e', None))
      | "||" ->
        map (Expr_appl ((if neg then "&&" else op), pn ~neg e', None))
      (* TODO xor/equi/impl *)
      | "<" ->
        map (Expr_appl ((if neg then ">=" else op), pn e', None))
      | ">" ->
        map (Expr_appl ((if neg then "<=" else op), pn e', None))
      | "<=" ->
        map (Expr_appl ((if neg then ">" else op), pn e', None))
      | ">=" ->
        map (Expr_appl ((if neg then "<" else op), pn e', None))
      | "!=" ->
        map (Expr_appl ((if neg then "=" else op), pn e', None))
      | "=" ->
        map (Expr_appl ((if neg then "!=" else op), pn e', None))
      | _ ->
        assert false)
    | Expr_const c ->
      if neg then map (Expr_const (const_negation c)) else e
    | Expr_ident _ ->
      if neg then mkpredef_call e.expr_loc "not" [ e ] else e
    | Expr_appl _ ->
      if neg then mkpredef_call e.expr_loc "not" [ e ] else e
    | _ ->
      assert false
    (* no array, array access, power or merge/when *)
  in
  res

let rec add_pre_expr vars e =
  let ap = add_pre_expr vars in
  let desc =
    match e.expr_desc with
    | Expr_ite (g, t, e) ->
      Expr_ite (ap g, ap t, ap e)
    | Expr_tuple t ->
      Expr_tuple (List.map ap t)
    | Expr_arrow (e1, e2) ->
      Expr_arrow (ap e1, ap e2)
    | Expr_fby (e1, e2) ->
      Expr_fby (ap e1, ap e2)
    | Expr_pre e ->
      Expr_pre (ap e)
    | Expr_appl (op, e, opt) ->
      Expr_appl (op, ap e, opt)
    | Expr_const _ ->
      e.expr_desc
    | Expr_ident id ->
      if List.mem id vars then Expr_pre e else e.expr_desc
    | _ ->
      assert false
    (* no array, array access, power or merge/when yet *)
  in
  let new_e = mkexpr e.expr_loc desc in
  { new_e with expr_type = e.expr_type; expr_clock = e.expr_clock }

let mk_eq l e1 e2 = mkpredef_call l "=" [ e1; e2 ]

let rec partial_eval e =
  let pa = partial_eval in
  let edesc =
    match e.expr_desc with
    | Expr_const _ ->
      e.expr_desc
    | Expr_ident _ ->
      e.expr_desc
    | Expr_ite (g, t, e) -> (
      let g, t, e = pa g, pa t, pa e in
      match g.expr_desc with
      | Expr_const (Const_tag tag) when tag = tag_true ->
        t.expr_desc
      | Expr_const (Const_tag tag) when tag = tag_false ->
        e.expr_desc
      | _ ->
        Expr_ite (g, t, e))
    | Expr_tuple t ->
      Expr_tuple (List.map pa t)
    | Expr_arrow (e1, e2) ->
      Expr_arrow (pa e1, pa e2)
    | Expr_fby (e1, e2) ->
      Expr_fby (pa e1, pa e2)
    | Expr_pre e ->
      Expr_pre (pa e)
    | Expr_appl (op, args, opt) ->
      let args = pa args in
      if Basic_library.is_expr_internal_fun e then
        Basic_library.partial_eval op args opt
      else Expr_appl (op, args, opt)
    | Expr_array el ->
      Expr_array (List.map pa el)
    | Expr_access (e, d) ->
      Expr_access (pa e, d)
    | Expr_power (e, d) ->
      Expr_power (pa e, d)
    | Expr_when (e, id, l) ->
      Expr_when (pa e, id, l)
    | Expr_merge (id, gl) ->
      Expr_merge (id, List.map (fun (l, e) -> l, pa e) gl)
  in
  { e with expr_desc = edesc }

(* Local Variables: *)
(* compile-command:"make -C .." *)
(* End: *)